Thursday, August 9, 2018

Looking for financial support of a valuable research (to whom it may concern)

It happens that I browsed the presentation reporting about your flood initiative and asking for collaboration. I am a professor in hydrology and I am interested. 

During the last years, in collaboration with Dr Olaf David of Colorado State University, we worked to implement an infrastructure, called GEOframe upon the framework offered by the Object Modelling System (OMS) and the Cloud Service Integration platform ( CSIP) platform. GEOframe tools are  devoted to forecast floods, droughts, snow cover and any component of the hydrological cycle in a flexible, maintainable, expandable platform.

My efforts on flood forecasting (and this link too) brought to both theoretical and applicative achievements. The latter came through the implementation, since more than a decade ago of the various systems used by the Province of Trento for its purposes, and recently to the implementation of a system for the Civil protection of Regione Basilicata

Academic achievements include works on small catchments and large catchments with various uses of remote sensed data. My former student Giuseppe Formetta (GS), now working at CEH at Wallingfort, (actually on-leave at JRC for this year) is applying an early version of our system to the Khrisna river in India. 

The current system, using the analogy of the river network, schematises a catchments as a graph and implements such informatics that allows the run in parallel of subcatchments, separate calibration in preparatory phases and their assemblage a-posteriori  (Net3). 
My Ph.D. student, Francesco Serafin (graduating in Spring 2019), besides Net3, enhanced the OMS console by allowing binding OMS compliant components (written in Java, C++ or FORTRAN) with Python and R codes, getting, at the end, a very flexible system.

Therefore, I think I can be useful for the project and I would very appreciate if we can establish some collaboration. 

Friday, August 3, 2018

The Horton Machine (formerly known also as JGrasstools) is back

The Horton Machine, the set of tools I developed several years ago with Hydrologis, is now back and well documented in gvSIG. All the merit goes to Andrea Antonello and Silvia Franceschi, the "Hydrologissers'.  I could not support new work on GIS (after my decade of involvement) but they were so kind to make me co-author of their presentations. During the last FOSS4G in Guimãraes they presented what they ported into  gvSIG and prepared some illustrative material that we share with you.
You can find:

If you need more information about gvSIG, please go to its site or its YouTube channel (learning gvSIG in 30 minutes, here).

Thursday, August 2, 2018

Categories of systems of equations in ODEs based hydrological systems

This is the continuation of the reservoirology topic saga.  Especially preparatory for understanding  is the Reservoirology #3 post. Here we show that the same topological structure of Petri Nets can address various physical concepts related to a hydrological system conceptualised as a set of reservoir and therefore solvable as a set of ODEs.
The main ODE system, however, does not reveal all of the system. A finer inspection can be obtained by investigating travel times and concentration of tracers (being the theoretical point of view, the first, the experimental one, the second).

To fix some concept we wrote the short presentations above. Or just click here. The pdf contains itself links to other posts and literature.

Tuesday, July 31, 2018

Anke Hildebrandt's recent research

If you are interested in the hydraulics of plants, you should give a look to the recent production of Anke Hildebrandt. Her production encounter my favor since she is able to put together experimental work and theoretical work on the thermodynamics of trees. A topic on which recently I became interested in. Relevant among her production is the work on hess: A thermodynamic fomulation of root water uptake which was awarded as one of the best paper of 2017 in HESS. No more comments. Just papers to read below. 

Recent papers

Van Stan, J. T., Norman, Z., Meghoo, A., Friesen, J., Hildebrandt, A., Côté, J.-F., et al. (2017). Edge-to-Stem Variability in Wet-Canopy Evaporation From an Urban Tree Row. Boundary-Layer Meteorology, 165(2), 295–310.

Guderle, M., Bachmann, D., Milcu, A., Gockele, A., Bechmann, M., Fischer, C., et al. (2017). Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse grassland plant communities. Functional Ecology, 32(1), 214–227.

Metzger, J. C., Wutzler, T., Dalla Valle, N., Filipzik, J., Grauer, C., Lehmann, R., et al. (2017). Vegetation impacts soil water content patterns by shaping canopy water fluxes and soil properties. Hydrological Processes, 31(22), 3783–3795.

Weisser, W.W., C. Roscher, S. Meyer, A. Ebeling, G. Luo, E. Allan, H. Beßler, R. Barnard, N. Buchmann, F. Buscot, C. Engels, C. Fischer, M. Fischer, A. Gessler, G. Gleixner, S. Halle, A. Hildebrandt, H. Hillebrand, H. de Kroon, M. Lange, S. Leimer, X. Le Roux, A. Milcu, L. Mommer, P. Niklaus, Y. Oelmann, R. Proulx, C. Scherber, M. Scherer-Lorenzen, S. Scheu, T. Tscharntke, M. Wachendorf, C. Wagg, A. Weigelt, W. Wilcke, E.-D. Schulze, B. Schmid, N. Eisenhauer. Biodiversity effects on ecosystem functioning in a 14-year grassland experiment: patterns, mechanisms, and open questions. Basic and Applied Ecology, doi: 10.1016/j.baae.2017.06.002. (link)

Zimmermann, A., Voss, S., Metzger, J. C., Hildebrandt, A., & Zimmermann, B. (2016). Capturing heterogeneity: The role of a study area’s extent for estimating mean throughfall. Journal of Hydrology, 542(C), 781–789.

Guderle, M., D. Bachmann, A. Milcu, A. Gockele, M. Bechmann, C. Fischer, C. Roscher, D. Landais, O. Ravel, S. Devidal, J. Roy, A. Gessler, N. Buchmann, A. Hildebrandt. Dynamic niche partitioning in root water uptake facilitates efficient water use in more diverse plant communities. Functional Ecology, doi: 10.1111/1365-2435.12948. (link)

Metzger, J. C., N. Dalla Valle, T. Wutzler, J. Filipzik, R. Lehmann, M. Roggenbuck, D. Schelhorn, J. Weckmüller, K. Küsel, K. U. Totsche, S. Trumbore, A. Hildebrandt. Tracing spatial variation of canopy water fluxes to the soil with high resolution data. Hydrological Processes. doi: 10.1002/hyp.11274 (link)

Arnold, S., Attinger, S., Frank, K., Hildebrandt, A. 2016. Assessing the structural adequacy of alternative ecohydrological models using a pattern-oriented approach. Ecological Modelling 316: 52-61. doi: doi:10.1016/j.ecolmodel.2015.08.003. (link)

Hildebrandt, A. A. Kleidon and M. Bechmann. A thermodynamic fomulation of root water uptake. Hydrology and Earth System Sciences. 20: 3441-3454, doi: 10.51947hess-20-3441-2016. (link)

Milcu, A., W. Eugster, D. Bachmann, M. Guderle, Ch. Roscher, D. Landais, O. Ravel, A. Gessler, M. Lange, A. Ebeling, W. Weisser, J. Roy, A. Hildebrandt, N. Buchmann. 2015. Plant species and functional diversity increase grassland productivity-related water vapour fluxes: a combined Ecotron and modeling approach. Ecology 97(8): 2044-2054. doi: 10.1890/15-1110.1 (link)

Renner, M., S. K. Hassler, T. Blume, M. Weiler, A. Hildebrandt, M. Guderle, S. J. Schymanski, and A. Kleidon. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits, Hydrology and Earth System Sciences 20: 2063-2083. doi: 10.5194/hess-20-2063-2016. (link)

Fischer, C., Tischer, J., Roscher, C., Eisenhauer, N., Ravenek, J. M., Gleixner, G., Attinger, S., Jensen, B., de Kroon, H., Mommer, L., Scheu, S., Hildebrandt, A. 2015. Plant species diversity affects infiltration capacity in an experimental grassland through changes in soil properties. Plant and Soil. 397(1): 1-16, doi: 10.1007/s11104-014-2373-5 (link)

Guderle M. and Hildebrandt A. 2015. Using measured soil water contents to estimate evapotranspiration and root water uptake profiles - a comparative study. Hydrology and Earth System Sciences. 19: 409-425. doi: 10.5194/hess-19-409-2015 (link)

Bechmann, M., C. Schneider, A. Carminati, D. Vetterlein, S. Attinger, A. Hildebrandt. 2014. Parameterizing complex root water uptake models - the arrangement of root hydraulic properties within the root architecture affects dynamics and efficiency of root water uptake. Hydrology and Earth System Sciences. 18:4189-4206. doi: 10.5194/hess-18-4189-2014 (link)

Fischer, C., C. Roscher, Jensen, N. Eisenhauer, J. Baade, S. Attinger, S. Scheu, W.W. Weisser, A. Hildebrandt. 2014. How do earthworm, soil texture and plant composition affect infiltration in managed grasslands along a plant diversity gradient? PLoS ONE9(6): e98987. doi:10.1371/journal.pone.0098987. (link)

Leimer, S., Kreutziger, Y., Rosenkranz, S., Beßler, H., Hildebrandt, A., Oelmann, Y., Weisser, W., Wirth, C. Wilcke, W., 2014. Plant diversity effects on the water balance of an experimental grassland. Ecohydrology, doi: 10.1002/eco.1464. (link)

Carminati, A., C. L. Schneider, A. B. Moradi, M. Zarebanadkouki, D. Vetterlein, H.-J. Vogel, A. Hildebrandt, U. Weller, L. Schüler, and S. E. Oswald. 2011. How the Rhizosphere May Favor Water Availability to Roots. Vadose Zone Journal 10:988. doi: 10.2136/vzj2010.0113. (link)

Kalbacher, T., C. L. Schneider, W. Wang, A. Hildebrandt, S. Attinger, and O. Kolditz. 2011. Modeling Soil-Coupled Water Uptake of Multiple Root Systems with Automatic Time Stepping. Vadose Zone Journal 10:727. doi: 10.2136/vzj2010.0099. (link)

Alexandrov, G. a., D. Ames, G. Bellocchi, M. Bruen, N. Crout, M. Erechtchoukova, A. Hildebrandt, F. Hoffman, C. Jackisch, and P. Khaiter. 2010. Technical assessment and evaluation of environmental models and software: Letter to the Editor. Environmental Modelling & Software 26:328-336. doi: 10.1016/j.envsoft.2010.08.004. (link)

Wednesday, July 25, 2018

If I was the head of my Department

I manifested to my colleague my availability to be voted for Department Head. Not an easy task indeed, and a challenge if I want to continue to do some research. However, this is the right time for doing it. In six years I will be too old to plan to for ten years in advance and the baton has to be given to others, while I will give "good advise, if I will not be able to give bad examples".
Today we are asked, the so far three candidates, to give our vision for our mandate in front  our peers and electors.
Below the above figure, you find my talk (in Italian). Have to say my opponents are good guys, and I have not problems to give up if I recognize if their will and view is better than mine.  At the end, I think one of the quality of good academics is to recognize where excellence stands. 

Monday, July 16, 2018

Towards a new SWMM, JSWMM

You want to design a storm water management system. What you usually get is a rainfall-runoff model. In this specific subfield, the model is SWMM. EPA SWMM contains many features that were implemented to simulate urban storm water depletion network. Meaning that there are specific model's parameters set for that, and that a community gathered around this tool.

However SWMM is not a system for designing sewers. Designing requires that you repeat the modeling actions several times. At the outlet of any pipe, you have to:
  • estimate the runoff under a "design rainfall" coming from some intensity-duration-frequency curves.
  • get the maximum discharge with an assigned return period (say 10 years)
  • Use simplified hydraulics for obtaining the size of the pipe apt to contain the maximum discharge
  • repeat the operation for the pipes downhill, without leaving out uphill branches.
Operation 2 above requires a search algorithm to find the rainfall duration that is responsible for the maximum discharge. The complete theory is in Rigon et al., 2011.
The point is that SWMM does not do the sequence of operation above. This is one of the reasons we implemented JSWMM. To see what it does, click on the figure.

Monday, June 11, 2018

On complex networks computation of mountain catchments

From June 12 to June 14 2018 in Trento there is the 5th European IAHR conference. I am convening (and also presenting a contribution) which derives from our modelling within the GEOframe system.
The scope of the presentation is to inform about functionalities of GEOframe and something of what it is hidden under the hood. Clicking on the figure above, please access the pdf of the presentation.

Wednesday, June 6, 2018

Snow related Ph.D. position (the Stradivari snow project)

The Stradivari project research aims to build better tools for analysing the processes of the hydrological cycle. The project is more focused on the tools (building the violin) but it does not forget the music that has to be played. It is conceived to account for hydrological processes interactions and feedbacks, and develop new mathematics (equations) for their description. Use of appropriate contemporary numerics is also part of the project. The overall project builds on the foundations given by the GEOtop ( model and the GEOframe-NewAGE ( infrastructure. 

It is time to move on the generation of snow models. The computation abilities and the physics of snow are now much better known than thirty years ago. However, most of the snow model are based on parameterisations which should be updated. We start from the experience made in GEOtop (versions 0.*,1.* and 2.*) which is capable of reliable snow height, temperature and densities, at operational level over all the Alps, but we look also to the experiences made by CROCUS, SnowPack and Alpine 3D. In particular GEOtop use highlighted various issues that we plan to overcome with a new version of the model, which requires both deepening the thermodynamics of snow and its numerical implementation.

In synthesis we identify the following aspects to be improved:
  • Actual GEOtop snow model is 1-d. It can improved including the vapor phase movements explicitly. Besides, we can add modules to have a better account for: density, viscosity and, adding the vapor phase, type of grain. 
  • The physics. Analysing the thermodynamics to keep out of the future formulation empirical parameterisations of the processes which revealed obsolete; 
  • Adding Richards equation for water percolation; 
  • Analysing the separation rainfall, snowfall through a more physical modelling than actual; 
  • the description of deposition on canopies, and subsequent effects of vegetation on sublimation; the effect of slope and topography characteristics on snow deposition and sublimation 
  • blowing snow in complex terrain 
  • assimilation of hydro-meteorological data and calibration 
  • integration with remote sensing data 
This research will be implemented in strict collaboration with MobyGIS, EURAC Research (Giacomo Bertoldi, Ph.D), Stephan Gruber,  Professor at Carleton University and with Niccolò Tubini, the Ph.D. student who is actually developing new theory codes for Richards equation and freezing soil. Collaborative and unselfish spirit is required in this research group.
The project has also some practical outcomes that are related to:
  • the avalanche triggering 
  • the water availability due to snow and glaciers melting (both in the short and long terms) 
  • the hydroelectric production 
All the code developed will be done in Github (or similar platform), inside the GEOframe community and will be Open Source according to the GPL v3 license.

The candidate will take care of implementing, besides the code, the appropriate procedures for continuous integration of the evolving source code, and s/he will be also asked to maintain a regular rate of commits to the common open platform. Despite these conditions, and being free and open source, the code will be intellectual property by the coder. This will be guaranteed also by the components-based infrastructure offered by OMS3, which allows to better define the contributions of anyone.
The implementation part will be followed, accompanied by testing activities, either for mathematical consistency, than for physical consistency with experiments and field measurements.
The Ph.D. student is intended to produce, besides working and tested codes, also at least three papers in major journals (VQR Class A), of which, at least one as first Author. Duration of the doctoral studies could be three or four years.

This project can enter either the curriculum C (Environmental Engineering) or the curriculum A (Modelling and Simulation) of our doctoral school.

Further information of the policies of the research group can be found:

Evaporation and Transpiration

This contains the video related to my interpretation of evapotranspiration.

The thermodynamics of evaporation

Transport of vapor in the atmospheric boundary layer
Evaporation from soils


The energy and mass budget 

The Penman-Monteith approach

Tuesday, June 5, 2018

From where do waters arrive

You cannot have an aqueduct if you do not have water to resupply it. So water comes from springs, wells (i.e. from groundwaters) or intakes (surface waters).


Tuesday, May 29, 2018

Do not do statistics if you do not have casual effects in mind

Statistics was believed after the master of the last century to be the science of correlation, not of causation. However it is clear to our contemporary researchers, at least some of them, that interpreting data without any guess about causation can bring to wrong conclusion. Here below, please find an example from: "The book of why: the new science of cause and effect" by Judea Pearl and Dana MacKenzie.
You should first look at the right figure. The scatterplot presents a roughly linear relation between Exercise and Cholesterol in blood. First observation, set this way, we probably have to reverse the axes. In a causal interpretation, it appears that exercise cannot cause cholesterol. On the contrary the cholesterol presence impose to the subjects to exercise more. Or there is something strange in data. More exercise cannot cause, by our normal belief, more cholesterol.
However, this is not actually even the main point. What the right figure suggests is that there is a positive correlation between the two variables: more cholesterol implies more exercise. However, as the left figure reveals, the real situation is not quite true. Because a cause of cholesterol is age, it appears that is reasonable to consider also this variable in the analysis. Then, when we separate the data among ages sets, we can see a further structure in the data and, in each class of age, in fact, the correlation between exercise and cholesterol is reversed. The less you exercise, the higher is your cholesterol. At the same time, the younger you are the less cholesterol you are expected to have in your blood. Now the picture is coherent with our causal expectations. I think there is something to learn.

Wednesday, May 23, 2018

Sunday, May 20, 2018

Graphs, Correlation and Causality

A week ago I started to read “The book of why: the science of cause and effects" by Judea Pearl. (see also his website). This is part of my search for new mathematics for describing entangled hydrological and ecological processes (see also this post and links therein). It is a dissemination book and not intended to grow too technical. However, it arrives the moment when understanding technicalities becomes part of the full understanding, if you do not want to remain a tourist of the new knowledge and become instead an active user of it. Pearl says he dedicated most of his research life to these problems and, therefore, pretending to fill the gap in few weeks is a nonsense.
I require more time to go deeper but presently I have no time. Therefore let me take some annotations here for making easier future efforts. 
To go to the details, one can go to the more technical book by Pearl himself, Causality. However, it happened I went to browse some chapters of the very good Shalizi's book on statistics. Chapters from the 20th are a reasonable starting point. Shalizi book itself is not fully explicative but a compromise where some theorems are not deminstrated but assumed and make explicit. Nice enough but requiring in any case the appropriate dedication. Shalizi seems to be a voracious reader, and in the bibliography of his chapter 21, he cites some fundamentals work to put in line for a full understanding the topic. His subsequent chapters also enlarge the vision to information theory, and is connections between the science of causal statistics. Cool. While postponing the study and trying to grasp concepts, I fully report the bibliography I came across here below (mostly from Shalizi's).
All of these are also a good reading for those who believe that data science is a practice which springs out from nowhere.


  • Chalak, K., & White, H. (2012). Causality, Conditional Independence, an Graphical Separation in Settable Systems. Neural Computation, 1–60.
  • Cover, Thomas M. and Joy A. Thomas (2006). Elements of Information Theory. New York: John Wiley, 2nd edn.
  • Dinno, A. (2017). An Introduction to the Loop Analysis of Qualitatively Specified Complex Causal Systems (pp. 1–23).
  • Guttorp, Peter (1995). Stochastic Modeling of Scientific Data. London: Chapman and Hall.
  • Jordan, Michael I. (ed.) (1998). Learning in Graphical Models, Dordrecht. Kluwer Academic.
  • Kindermann, Ross and J. Laurie Snell (1980). Markov Random Fields and their Ap- plications. Providence, Rhode Island: American Mathematical Society. URL
  • Lauritzen, S.L., Dawid, A.P., Larsen, B.N., Leimer, H.G. (1990), Independence properties of directed Markov fields, Networks, 20, 491-505
  • Lauritzen, S.L. (1996) Graphical Models. New York: Oxford University Press.
  • Loehlin, John C. (1992). Latent Variable Models: An Introduction to Factor, Path, and Structural Analysis. Hillsdale, New Jersey: Lawrence Erlbaum Associates, 2nd edn.
  • Moran, P. A. P. (1961). “Path Coefficients Reconsidered.” Australian Journal of Statis- tics, 3: 87–93. doi:10.1111/j.1467-842X.1961.tb00314.x.
  • Pearl, J. (2000). Causality- Models, Reasoning, and Inference (pp. 1–386). Cambridge University Press.
  • Wright,S., The Method of Path Coefficients. Annals of Mathematical Statistics 5:161-215.
  • Wysocki, W. (1992). “Mathematical Foundations of Multivariate Path Analysis.” In- ventiones Mathematicae, 21: 387–397. URL

Thursday, May 17, 2018

A little on soil physics

This shows the lectures I gave this week on soil and soil water to my class of hydrology.


Texture and structure of soils


Darcy and Buckingham laws

Soil Water retention curves
Hydraulic conductivity
Hydraulic conductivity at saturation
Richards equation (first part)
Solving Richards equation
Richards equation 1d
Information about solving Richards equation with GEOframe tools

Saturday, May 12, 2018

Aqueducts YouTube Videos

Here they are the videos of the aqueducts lectures.


Distribution Network Topologies

Distribution Network Equations
Design requirements

Verification of the design
To sum up

Tuesday, May 8, 2018

Adige's Research and publications

This post is to contain research work and studies about river Adige as soon as they come to my attention. Please help me in finding them.


Master Thesis
Ph.D. Thesis

Saturday, May 5, 2018

GEOframe documentation standards

We announce that, parallel to this blog, it was just opened an OSF project called GEOframe that contains the complete documentation of the various components developed. Information will continue, however, to appear here too.
GEOframe is already a big tree and it will grow more and more. Click on the Figure to access the documentation site. Each OMS component will have its OMS subproject and the subproject itself contains as standard:
  • The link to the component  source code (the URL of Github site where developers and programmer can download the code)
  • Github executable with examples (the Github - GeoframeComponents site where to download a working example including the executables)
  • A link to the Component's documentation  
  • Jupiter Notebooks: illustrating the examples' I/O
  • R: Not available Yet: but the same as above but the same as above in R
  • GEOframe blog page: point to the page where is further documented the component (essentially this information should be the one summarised in the Wiki page of the OSF component's page

Thursday, April 19, 2018

Medium term important questions in hydrology

This is part of the IAHS initiative in identifying some important questions in today's hydrology. As you know from the previous post, I made my eleven question questions. From the colleagues who participated to the call they received a decent agreement. However, during the phase of thinking, there was a refocusing (which I believe was useful) and a request to look to topics or issues that could be answered or solved in a few years. More specific, less oriented to basic questions.
This brought to a different set of questions (whose formulation I did not participated actively). Finally, Gunther Blöschl (GS) writes about the final screening that happened at the Wien Symposium: "On Saturday we had three rounds of discussions in four break out groups and one final plenary discussion. In each round we discussed the questions, merged them, split them and reworded them as needed followed by a voting on prioritising the questions. The voting was for gold/silver/bronze/remove in each of the three break out group rounds. Only the gold and silver ones were retained for the plenary with an additional round of voting (by the entire plenary) for gold, silver or removing them from the list. The idea of the process was to whittle down the 260 questions initially proposed to a more coherent and smaller set of those questions deemed most important by the participants. The process resulted in 16 gold and 29 silver questions which are posted here. "
I think it is important to see what was chosen to have a poll about what the community (mostly the European one?) thinks it is important, even if, maybe, not fundamental.

On spatial interpolation

Introduction to spatial interpolation (slides here)

Kriging rational (slides here)

A little more on (semi)variogram (slides here)
More material on the main page.

Sunday, April 15, 2018

Introduction to Solar radiation and its computation

Here they are the video of introduction to solar radiation for hydrologists. There is not any special in this. You can see all our contributions and literature on the topic in these posts.

Introduction to Radiation - Planck and Stefan-Boltzmann laws  (slides here)

Radiation from Sun to Earth (slides here)

Radiation vs latitude (slides here)

Attenuation of solar radiation by the atmosphere (slides here)

Copying with terrain (slides here)

Long wave radiation (slides here)

Thursday, April 12, 2018

Dalton medal 2018 went to Gaby Katul

Gaby Katul (GS) is one of the most prominent hydrologists around the world (if this statement can have a meaning): his production is extremely high both in quality and quantity and for any is a lighthouse to follow. His production is especially directed to study turbulence and eco-hydrology. Therefore there is no doubt that his Dalton medal, received this week at EGU general assembly is well deserved. I could not be in Wien this year. However, I asked Gaby if he can send to me his presentation that all the present qualified as outstanding.

Please clicking on the above figure access and enjoy it.

Wednesday, April 11, 2018

Schymanski & Or model for Evapotranspiration in GEOFRAME

In trying to move out from Penman-Monteith scheme, we arrived to the Schymasky and Or paper. It re-analyses the calculation of Transpiration of a leaf. In our work we are trying to extend their contribution to the entire canopy and subsequently to an entire catchment. As in our tradition our work is both theoretical (in the analysis of equations) and numerical up to the implementation. The results of our efforts are presented in the next poster that was shown both at the Hydromod 2018 conference and at EGU general assembly in Wien.
You can find it directly at the blog TranspirAction (by Michele Bottazzi) or clicking on the Figure above. The portrait version used in Tübingen is here.

GEOframe-NewAGE becomes operational

Marialaura Bancheri after her Ph.D. defense mainly worked at university of Basilicata in Potenza under the supervision of Professor Salvatore Manfreda (GS) to apply GEOframe-NewAGE infrastructures to the realtime forecasting of discharges in Basilicata region. Salvatore presented the result of their work at EGU Wien 2017. Please below, find the presentation about the system implemented.
Clicking on the figure, you can access the slides. The work in Basilicata is a great achievement, even if only a few of the potentialities of the system were exploited.

Tuesday, April 10, 2018

Towards the simultaneous account of Water and Energy budgets (a.k.a. GEOtop 3.0)

There are several ways to categorize this work. One way is to see it inserted in the GEOtop 3.0 project that aims to rebuild GEOtop physics and informatics. Another way is to see it inserted in the work to get better cryospheric parameterisations. A third way is to see it as a part of the process delineate in my professorship talk.  More pragmatically, it represents a new implementation of the coupled Richards equation and energy budget by using sound numerics and OMS3.
No easy to read. It requires application.
You can see the presentation at the OSF site, here.

Wednesday, April 4, 2018

Category theory

In feeling that Hydrology needs new mathematical-physics, I explored several directions (Information Theory, Statistics, Causality theory, Algebraic topology, Thermodynamics -!-, and not very much the usual paraphernalia that modern physics uses whose taste I kind think to know, Petri Nets) and I arrived to category theory. Category theory is the mathematics of connections and retro-actions represented in graphical form. I arrived here because I think that expanding  hydrology to Earth System Science, it opens to the world of connections, and understanding connections means understanding complexity. 

For other definitions, please give a look to this new book by 
Just at the first pages, it also address to other books, and I also found
I collected many other books and papers about CT. However, if you want to start, start from these two. Eventually you can subscribe to the Azimuth forum and enroll John Baez course

Monday, April 2, 2018

GEOFRAME-NewAGE (a.k.a. JGrass-NewAGE) main publications

Please find below the main papers and the Ph.D. dissertations related to the GEOFRAME-NewAGE system. (You can find general information on GEOFRAME NewAGE starting from this post).

12 - Bancheri, M., Serafin, F., Bottazzi, M., Abera, W., Formetta, G., & Rigon, R. (2018). The design, deployment and testing of Kriging models in GEOframe. Geoscientific Model Development Discussions, 1–31.

11 - Bancheri, M., A flexible approach to the extimation of water budgets and its connection to the travel time theory, Ph.D. Dissertation, 2017

10 - Abera, W; Formetta, G.; Brocca, L.; Rigon, R.; Water budget modelling of the Upper Blue Nile basin using the JGrass-NewAge model system and satellite data, Hydrol. Earth Syst. Sci., 21, 3145-3165, 2017,

9 - Abera, W; Formetta, G.; Borga, M.; Rigon, R.; Estimating the water budget components and their variability in a Pre-Alpine basin with NewAge-JGrass, Advances in Water Resources, 2017

8 - Abera, W. - Modelling water budget at a basin scale using JGrass-NewAge system, Ph.D. Dissertation, Università di Trento, 2016

7 - Formetta, G., Bancheri M., Rigon R., Performances of site-specific parameterizations of longwave radiation,  Hydrol. Earth Syst. Sci., 20, 4641-4654, 2016,

6 -  Formetta G. ,  Antonello A. , Franceschi S. , David O., Rigon R.,  Digital watershed representation within the NewAge-JGrass system. Boletin Geologico y Minero, 125 (3): 371-381, 2014. ISSN: 0366-0176

5 -  Formetta G., David O., Kampf S., Rigon R., Snow water equivalent modeling components in NewAge-JGrass, Geosci. Model Dev., 7, 725-736, 2014

4 -  Formetta G.,  Antonello A., Franceschi S., David O., and Rigon R., Hydrological modelling with components: A GIS-based open-source framework, Environmental Modelling & Software, 5 (2014), 190-200}

3- Formetta, G.,  Hydrological modelling with components: the OMS3 NewAge-JGrass system, Doctoral Dissertation, Università di Trento, 2013

2 -  Formetta G., Rigon R., Chavez J.L., David O., The short wave radiation model in JGrass-NewAge System, Geosci. Model Dev., 6, 915-928, 2013,, doi:10.5194/gmd-6-915-2013

1 -  Formetta, G., Mantilla, R., Franceschi, S.,  Antonello A., Rigon R., The JGrass-NewAge system for forecasting and managing the hydrological budgets at the basin scale: models of flow generation and propagation/routing, Geoscientific Model Development, Volume: 4 Issue: 4 Pages: 943-955, DOI: 10.5194/gmd-4-943-201, 2011

NewAGE is based on the Object Modelling System whose main reference is the following:

0- David, O., Ascough, J.C. II, Lloyd, W., Green, T.R., Rojas, K.W., Leveasley, G.H., Ahuja, L.R., A software engineering perspective on environmental modeling framework design: The Object Modeling System, Environn. Modelling & Software, 201-213, 2013

P.S. - The system has been formerly named Jgrass-NewAGE but we though it was better to avoid possible misunderstandings with the GRASS community (that we deeply love) and changed the name. Besides, GEOFRAME better interprets the spirit of the new components than JGrass.

Travel-Time Based Modelling of Transport in Hydrological Systems

This is one of the posters I will present next 5th of April at Hydromod2018.

It present some of our results in TT theory and conveys the fact that, given a set of equations, the travel time distribution is (obviously) set. There are no hidden degree of freedom. All of it is contained in the paper about age-ranked equations. Clicking on the Figure you have the high resolution pdf.

Wednesday, March 28, 2018

GEOtop (PDE based) vs NewAGE (ODEs based)

This is a the oster we'll present at Tübingen on April 5 during the 2018 Hydromod Conference. It argues about process-based modelling and lumped modelling, intending that the first type of models solve partial differential equations (PDEs), the second (ODEs).

Clicking on the figure above you can access the pdf of the file and read the Q-codes, if you like. Q-codes refers to other posts in abouthydrology. Therefore as an alternative you can browse the blog for them.

Tuesday, March 27, 2018

Making a good poster

Everybody fight for having an oral presentation at conferences. However, a poster is often not a bad idea. A poster is like a resume. His scope is not to tell everything about your work, but to attract potentially interested people from who you can have nice conversations, learn something, start a collaboration. To get the general idea of an award winning poster, give a close look to the poster below, that is part of a dedicated page on Nature.
A less traditional layout is the one of the poster to which I dedicated the first post of this year. Finally informative guidelines by:
Obviously, it is assumed that you have something to tell (but this is another topic). 

Tuesday, March 20, 2018

Designing storm waters managements systems

We are arrived then to design a storm water management system. Which are the requirements ? Which are the typical case studies ? Which are the tools for making the right estimations ? These lectures start to give an answer.

Criteri di progettazione delle Fognature pluviali

Esempi di due interventi di progettazione e/o riprogettazione delle fognature pluviali

Criteri di dimensionamento speditivo delle reti di fognatura pluviale (Parte I)

Criteri di dimensionamento speditivo delle reti di fognatura pluviale (Parte II)

Criteri di dimensionamento speditivo delle reti di fognatura pluviale (Parte III)

Using the linear reservoir model to infer the maximum discharge of a hydraulic network

Ancora sul calcolo del diametro interno (speditivo) dei tubi di fognatura

Tuesday, March 13, 2018

A short introduction to precipitation and precipitation statistics

I am sharing here the videos of my lectures, in Italian, about precipitations. They were performed during my today class of Hydrology, whose main site is here. More material on precipitations can be found in this old post.

Precipitation: a short introduction

Statistical properties of precipitation on the ground

The concept of return period

Intensity-Duration-Frequency curves (and return period again)

Gumbel distribution function

Interpolating Gumbel with the moments method

Interpolating Gumbel with the maximum likelihood method

Interpolating Gumbel with the minimum squares method

Illustrating the Pearson's test

A deeper explanation of Pearson's test (and a little of hypothesis testing)

Alternative videos for some of the topics are available here.

The Generalised extreme value distribution

Some on statistic of extreme precipitations

These are the lectures that regard the interpolation of Intensity-Duration-Frequency (IDF) curves to rainfall estreme datas. It is covered a  little of theory which will be subsequently used to practically interpolate some data sets. These lectures are part of the class of Hydraulic Constructions and Hydrology held at the University of Trento.

Intensity-duration-frequency curves definition

The Gumbel distribution

Moments method

Maximum likelihood

Minimum squares

Thursday, March 8, 2018

Open Science Frameworks 4 Italians

For enjoinment of my students, I prepare some slides and and gave a brief introduction to the Open Science Framework in Italian that can be of help for anyone.

The slides can be found here.

Using the slides I gave this talk.

However, I also make a short practical presentation.

They obviously do not substitute the much more comprehensive YouTube in English

Wednesday, March 7, 2018

Water viscosity

“Viscosity is a property of the fluid which opposes the relative motion between the two surfaces of the fluid that are moving at different velocities. In simple terms, viscosity means friction between the molecules of fluid. When the fluid is forced through a tube, the particles which compose the fluid generally move more quickly near the tube's axis and more slowly near its walls; therefore some stress (such as a pressure difference between the two ends of the tube) is needed to overcome the friction between particle layers to keep the fluid moving.” (Source Wikipedia)

One relevant point for us is that water viscosity changes with temperature in a non neglibile way between -10 and 40 centigrades, temperature that many soils can across easily in different seasons: this table shows how much. A model for water viscosity in a large range of temperatures is given by Kestin et al. [1978], which can be used in models.
Viscosity is actually so important that an entire website is dedicated to its experimental values of viscosity: viscopedia. Same information can also be read from this other informative website about water as a substance.
Viscosity variation is usually forgotten in hydrological modelling and the fact that water travels two times faster (at least) in summer than in winter is usually forgotten in any model of runoff production. It is probably time that we incorporate such effects in our modelling of infiltration, and for what regards me, in our numerical integrator of Richards equation.
When dealing with infiltration, in hydrologically realistic contexts, papers by Constanz and coworker are a standard reference, starting from Constantz [1981], Ronan et al, 1998, and Costantz and Murphy [1991]. Papers citing them are also interesting (here the Scopus list) and cover quite recent works too. We can identify two issues (the usual ones): first it is necessary to understand how viscosity variation affects equations of flow, secondly how these affect a heterogeneous landscape.
Grifoll et al (2005), in analysing the problem of water vapor transport, independently if you like or not their solutions, contains the right equations, and can be an help to write yours.
A related question is if temperature alters also the soil water retention curves. This problem is faced by a recent paper by Roshani and Sedano [2016] but it is still clearly an open problem.

I did not start really reading these papers. However, here it is their list below.