Wednesday, February 25, 2015

Fognature Pluviali

Per semplificare il post originale ho raccolto qui tutto il materiale del Corso di Costruzioni Idrauliche sulle fognature pluviali.

1 - Brevissimamente: il ciclo idrologico e la misura delle grandezze idrologiche
2 - Elementi di analisi statistica esplorativaAudio (27 Mb).  Una guida a fumetti sull'argomento.
3 - Un ripasso di teoria della ProbabilitàAudio (24.4 Mb). Qui un sintetico manualetto con alcuni temi "non standard" (dovuto a Falcioni Vulpiani)

4 - Le precipitazioni (genesi - Audio 34.6 Mb - e trattazione statistica degli estremi. Audio - 29.6 Mb, Test di Pearson, 17.4 Mb, GEV - 7.4 Mb )
5 - Introduzione ad R^1^1b
6 - Calcolo delle linee segnalatrici di possibilità pluviometrica con R e lo script R usato a lezione (che riprende con differenze minime le operazioni rappresentate nelle slides)^2. Qui anche una relazione tipo (fatta originariamente il LaTeX). Per chi vuole esagerare anche uno stile LaTeX che mi piace particolarmente.
7 - Le fognature pluviali (per di più dovute al lavoro di  Roberto Magini e che io ho solo ritagliato sulle mie esigenze). Audio (19.2 Mb)
8 - La teoria dell'idrogramma istantaneo unitario e dell'idrogramma istantaneo unitario  Audio: Introduzione allo IUH (31.1 MB);  Alcune distribuzioni dei tempi di residenza (5.8 Mb); Idrogramma istantaneo unitario geomorfologico  (16.8 Mb); Portate Massime (17.4 Mb).
9 - Dimensionare e verificare una fognatura pluvialeAudio (30.4 Mb)
10 - Il programma Trento_p di cui la documentazione è presentata in un separato post.
11 - Cenni sulle pompe e sugli impianti di sollevamentoAudio sulle pompe (17.6 Mb). Audio sul dimensionamento dei volumi degli impianti di sollevamento (7.9 Mb).


Qui si torna alla pagina principale

Acquedotti

Per semplicità di consultazione ho separato il materiale del Corso di Costruzioni idrauliche nelle due parti principali. Questa è la parte di acquedotti.

1 - Le reti di acquedotto (I primi 6 capitoli del libro di Maurizio Leopardi da leggere per farsi un'idea di che cosa si sta parlando:
                                                    1- Utilizzo Idropotabile
                                                    2- Il trasporto in pressione
                                                    3- Dimensionamento idraulico delle condotte
                                                    4- Acquedotto con sollevamento meccanico
                                                    5- Serbatoi
                                                    6- Reti di distribuzione)

2 - Opere di Captazione  Audio (26 Mb) e PozziAudio (22.2 Mb).
3 - Le reti di distribuzioneAudio (30 Mb)
4 - Le equazioni delle reti . Audio: 1, 2 - Equazioni delle reti. I (13Mb) e II (20 Mb). 3 -Verifica di una rete idraulica (18 Mb).
5 - Il software EPANET e alcuni strumenti collegati^3
6 - Le reti di adduzioneAudio (20.2 Mb)
7 - Serbatoi di compenso e Torrini piezometriciAudio serbatoi (20.7 Mb)
8 - Opere di presa e piccole traverse fluvialiAudio dimensionamento griglia (23.7 Mb). Audio: dimensionamento della trappola (14.3 Mb). Dissabbiatore e altri organi (1.6 Mb)
9 - Gli impianti domestici.
10 - Manufatti e opere di regolazione (slides di Roberto Magini). Audio (8.8 Mb)
11 - Tubazioni (Slides di Roberto Magini). Audio (18.9 Mb)

Per tornare al tornare al post originale.

Tuesday, February 24, 2015

Un'Introduzione all'idrologia

Qui di seguito potete trovare introduzione al corso (Youtube).   L'introduzione all'idrologia come scienza fisica, è suddiviso in varie parti:

1 -  All'inizio fu l'acqua
2 -  I flussi idrologici e la risorsa idrica. Audio 2015: (6.2 MB)
3 -  I fenomeni estremi. Audio 2015: (7 Mb)
4 -  Il mezzo è il messaggio.  Audio 2015: (8.8 Mb)
5 -  L'informazione idrologica
6 -  Bilanci di Massa ed EnergiaAudio 2014:  (11.8 Mb)
7 -  Il bilancio globale di EnergiaAudio 2014 (6.3 Mb)
8 -  Variabilità spaziale del ciclo idrologicoAudio 2014 (8.3 Mb)
9 -  Scale temporali nel ciclo idrologicoAudio 2014:  (6.1 Mb)
10 -Budiko Analysis




(Una splendida introduzione alternativa, anche se non tecnologicamente up-to-date,  è la lettura dell'articolo "Evolution of modern  hydrology" di P. Eagleson,  WRR 1994.

Una visione complementare è anche offerta da "Global Hydrological Cycles and World Water Resources", di T. Oki e S,. Kanae).

Per tornare al post principale qui.

Bibliografia


Aeschbach-Hertig, W., & Gleeson, T. (2012). Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5(12), 853–861. doi:10.1038/ngeo1617

Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Roesch, T., and  Siebert, S. (2003). Global estimates of water withdrawals and availability under current and future “business-as-usual” conditions. Hydrological Sciences Journal, 48(3), 339–348. doi:10.1623/hysj.48.3.339.45278

Amante C. & Eakins B.W., ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. National Geophysical Data Center, NESDIS, NOAA, United States Department of Commerce, Boulder, CO, August 2008. Available www.ngdc.noaa.gov/mgg/global/etopo1sources.html

Ball, P. - H2O, a biography of water, Phoenix ed., 1999

Batjes N.H., ISRIC-WISE Harmonized Global Soil Profile Dataset (Ver. 3.1), Wageningen: ISRIC - World Soil Information, 2008 (ISRIC Report 2008/02) 

Baumgartner A. & Reichel E., The World Water Balance. Elsevier, New York, 179 p., 1975

Bertoldi, G., R. Rigon & T. M. Over, Impact of watershed geomorphic characteristics on the energy and water budgets, Jour. of Hydromet., vol. 7, n. 3, p. 389–403, 2006. 

Budyko M.I., Evaporation under natural conditions, Gidrometeorizdat, Leningrad (1948) English translation by IPST, Jerusalem .

Budyko M.I., Climate and life, transl. and edit. by Miller, D. H., Academic Press, London, 1974

Dingman S., Physical Hydrology, Macmillan Publishing Company, New York, 1994.

Donohue RJ, Roderick M, McVicar TR. 2007. On the importance of including vegetation dynamics in Budyko’s hydrological model. Hydrology and Earth System Sciences 11: 983–995.

Gentine, P., Troy, T. J., Lintner, B. J., & Findell, K. L. (2012). Scaling in Surface Hydrology: Progress and Challenges. Journal of Contemporary Water Research and Education, 147, 28–40.

Global Change in the Geosphere-Biosphere, NRC, 1986, 

Kwon, E. Y., G. Kim, F. Primeau, W. S. Moore, H.-M. Cho, T. DeVries, J. L. Sarmiento, M. A. Charette, and Y.-K. Cho (2014), Global estimate of submarine groundwater discharge based on an observationally constrained radium isotope model, Geophys. Res. Lett., 41, 8438–8444, doi:10.1002/ 2014GL061574.

Hijmans R.J., Condori B., Carillo R., Kropff M.J., A quantitative and constraint-specific method to assess the potential impact of new agricultural technology: the case of frost resistant potato for the Altiplano (Peru and Bolivia). Agricultural Systems, vol. 76, p. 895–911, 2005.

Holland, H. D. (2006). The oxygenation of the atmosphere and oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1470), 903–915. doi:10.1098/rstb.2006.1838

"i mille fiumi" di Arrigo Boetti e Anna-marie Sauzeau-Boetti

Lehner B. & Doll P., Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology Volume, vol. 296, p. 1-22, 2004

Lenton, T. (1998). Gaia and natural selection. Nature, 394, 439-447.

Lin, B., Stackhouse P.V. Jr., Minnis P., Wielicki B.A., Hu Y., Sun W., Fan T.-F. &, Hinkelman L.M., Assessment of global annual atmospheric energy balance from satellite observations, J. Geophys. Res., vol. 113, D16114, doi:10.1029/2008JD009869, 2008

 Mitchell, J.M., an overview of climate variability and its causal mechanisms, Quaternary Res., 6, 481-493

Oki, T. (2006). Global Hydrological Cycles and World Water Resources. Science, 313(5790), 1068–1072. doi:10.1126/science.1128845

Oldekop E., About evapotranspiration in riverine basins (in Russian). Jurjev (Tartu), 1911

Peixoto, J.P., and A. H., Oort, The Physics of Climate, AIP, 1992

Peixoto J.P. & Kettani M.A., The control of the water cycle, Sci. American, vol. 228, p. 46-61, 1973

Rabus B., Eineder M., Roth A. & Bamler R., The shuttle radar topography mission - a new class of digital elevation models acquired by spaceborne radar, ISPRS Journal of Photogrammetry & Remote Sensing, vol. 57, p. 241-262, 2003

Rigon R., Bertoldi G. & T. M. Over, GEOtop: A distributed hydrological model with coupled water and energy budgets, Jour. of Hydromet., vol. 7, n. 3, p. 371- 388, 2006.

Serafin, F., Sull’analisi climatica del tirolo mediante modellazione geostatistica e ricerca dei parametri per la descrizione di funzioni climatiche stagionali, tesi di laurea triennale, realtori R. Rigon e Matteo Dall’Amico, 2011

Shiklomanov I.A. & Sokolov A.A., Methodological basis of world water balance investigation and computation. In: New Approaches in Water Balance Computations. IAHS Publ. no. 148, p. 77-90, 1983

Shiklomanov, I. A. (2000). World water resources: a new appraisal and assessment for the 21st century; 1998, 1–40.

Simoni S., F. Zanotti, G. Bertoldi & R. Rigon, Modelling the probability of occurrence of shallow landslides and channelized debris flows using GEOtop-FS, Hydrol. Proc., vol. 22, n. 4, p. 532-545, 2007.

Voisin, N., Wood, A. W., & Lettenmaier, D. P. (2008). Evaluation of Precipitation Products for Global Hydrological Prediction. Journal of Hydrometeorology, 9(3), 388–407. doi:10.1175/2007JHM938.1

Vörösmarty, C. J. (2000). Global Water Resources: Vulnerability from Climate Change and Population Growth. Science, 289(5477), 284–288. doi:10.1126/science.289.5477.284

Wallace J.M. & Hobbs P.V., Atmospheric Science An Introductory Survey. Academic Press. New York. 467pp., 1997

Zhang L., Dawes W.R. & Walker G.R., Response of mean annual evapotranspiration to vegetation changes at catchment scale, Water Resour. Res., vol. 37, p. 701–708, 2001. 

Friday, February 20, 2015

A new topic for a Ph.D.

GEOtop 2.0 (http://abouthydrology.blogspot.it/search/label/GEOtop%202.0) is a successful process-based model of the hydrological cycle. It integrates both the water and energy budget and it is supplied by the MeteoIO library for meteo data interpolations. GEOtop has a development history of more than fifteen years (http://abouthydrology.blogspot.it/2015/02/geotop-essentials.html). It can be used, and has been used, for soil moisture forecasting, eco-hydrology simulations, snow pack evolution forecasting, permafrost modelling, landslide triggering assessment. Its code is a mature C++ implementation of solid algorithms and physics. However it is conceived as a monolithic structure, in which improvements can be made with difficulty and after overcoming a huge learning curve.  At the same time, the user experience is far by being optimal, and must be structurally improved.

Therefore, during the same evolution of the model, it was envisioned to migrate it towards a more flexible informatics where improvements, maintenance and documentation could be pursued more easily. This refactoring of the code, is not a trivial operation, and would require to understand the present structure of GEOtop, and advanced concepts of software engineering. The first step would be obtaining a temporary implementation according to the guideline sketched in: http://abouthydrology.blogspot.it/2014/09/improve-geotop-informatics.html.

Subsequently a tied integration of the main modules/classes should be pursued inside the Object Modeling System Infrastructure (http://abouthydrology.blogspot.it/2013/10/the-summer-school-on-object-modelling.html), as suggested in http://abouthydrology.blogspot.it/2011/03/going-beyond-present-stato-of-art-in.html.  This would immediately open the road to use the intrinsic parallelism of OMS components, with a better treatment of river basins genmetry and topology, and  the integration of the various tools developed within the JGrass-NewAGE system with GEOtop own capabilities: but it will be a byproduct of the work, not the main objective of this Ph.D.

The main work in fact will be in implementing classes for the use of unstructured meshes, for the implementation of algorithms for solving partial differential equations in a matrix free formalism, and for a parallelisation of internal algorithms of GEOtop, by using standard matrix packages or enhancing them, either in Java or C++. The focus will be in the efficiency of the implementations inside standard-main stream techniques,  in supporting literate programming, and discovering appropriate design patterns in programming this science, more than on hydrology itself. 

Integration of some of the OpenDA (http://www.openda.org/joomla/index.php) classes in OMS and their prototypical use could also part of the Ph.D. work. 

Obviously, the candidate must have programming skills in Java and C++, or the willing to pursue them having outstanding knowledge of hydrological physical processes. All the code developed is intended to be free software, and must be produced with appropriate documentation, being the reflection about research reproducibility and replicability and the productions of tools for it being effective, part itself of the main work.

Who is interested can write to me. Who would like to finance such a research or know programs that can support it are also welcomed.

Wednesday, February 11, 2015

HydroloGIS is ten years old

I cannot avoid it. I am compelled to bring to your attention to the ten birthday celebration of Hydrologis, run by former students Andrea Antonello and Silvia Franceschi.


Click on the Rain Forest cake above for getting the chronicles of their last ten years directly from Andrea's JGrasstechtips blog.


Tuesday, February 10, 2015

GEOtop essentials

Being one of my more fruitful research products, GEOtop has so many posts that it can be really difficult to understand what it is in brief. GEOtop is a unique blend of a process-based hydrological model and a Land Surface Model. It in fact integrates both the water and energy budget: a characteristics that differentiate it from many other models. Recently there were many efforts in the same direction. However, these efforts combine different models together, while in GEOtop the processes description is intimately tied.

To start with GEOtop probably the best way is to read the two most general papers first.

Rigon, R., Bertoldi, G., & Over, T. M. (2006). GEOtop: A Distributed Hydrological Model with Coupled Water and Energy Budgets. Journal of Hydrometeorology, 7, 371–388.

Endrizzi S., Gruber S., Dall’Amico M., Rigon R., GEOtop 2.0.: Simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects, Geosci. Model Dev., 2014

Subsequently a good reading could be the history of GEOtop, meaning understanding the motivation that guided us in building it:
Second part: Up to versione 0.5
First Part: The addition of Land atmosphere interactions, and beyond.

The main presentations (mostly invited) about GEOtop can be found here. The most relevant papers published in Journals, here.

The overall set of informations, including new directions, here

Wednesday, February 4, 2015

Just twenty per cent

A recent paper on GRL, based on isotope studies claims that the contribution of fresh water to the oceans, could be just 20% (Wow!), the rest coming from what is termed the 'subterranean estuary,' which some researchers think supply the lion's share of terrestrial nutrients to the oceans.

The paper, by Kwon et al., is the result of many years of work, and is open access clicking on the link below. 

Reference

Kwon, E. Y., G. Kim, F. Primeau, W. S. Moore, H.-M. Cho, T. DeVries, J. L. Sarmiento, M. A. Charette, and Y.-K. Cho (2014), Global estimate ofsubmarine groundwater dischargebased on an observationally constrainedradium isotope model, Geophys. Res. Lett., 41, 8438–8444, doi:10.1002/ 2014GL061574.