Monday, December 27, 2021

DARTH4MED - A Digital eARth Twin of Hydrology for the prediction of water scarcity in the Mediterranean area

The DARTH4MED, D4M for short, project aims to be a high resolution twin of the hydrology and carbon cycle of the Italian peninsula. It is based on Po, WATZON and WATERSTEM projects, making treasure of previous modelling efforts like GEOtop and the GEOframe system, and GIS tools implementations like Jgrass and the Horton Machine toolbox. It builds upon state-of-art hydrological modelling case studies of various catchment sizes, from hillslope to Po and Blue Nile. It also draws on experiences in IT applied to hydrology with developments of the object modelling system, OMS.

D4M gives substance, both technical and scientific, to the Digital Earth metaphor and exploits it to improve the work of scientists and professionals, and to support open science. It aims to provide a shared infrastructure usable by scientists and users to investigate the processes involved in the water, energy and carbon budgets, WB, EB and CB, at a very fine spatial and temporal scale, 1 km2, hourly.

The GEOframe system already contains a sophisticated and complete set of modelling components, constituting a solid basis of comparison for innovative developments. Open API and training will be offered to anyone to advance the mathematical, statistical and numerical descriptions of hydrological and eco-hydrological processes with little programming effort. From this perspective, the project will be an experiment in participatory science, since the tools developed could be improved and given back by collaborative researchers. The method of multiple hypothesis testing will be the rule of scientific endeavour.

The core of the system will manage the interactions of groundwater, vadose zone, surface water, snow, vegetation, atmosphere, usually analyzed separately, and join them seamlessly in the continuum containing the feedbacks among the parts. On these bases researchers will be able to evaluate climate, hydrologic, pedological, ecological droughts.

D4M has several primary objectives, listed below:
  • To provide the core of a DE, defined as a Digital eARth Twin Hydrology system (a DARTH), to do hydrology by computer, with an infrastructure that allows partecipative hydrology and makes Earth system science practice easier for all the Italian Peninsula.
  • To improve the modelling of the water budget, WB, energy budget, EB, Vegetation and Carbon Cycle.
  • To provide forecasts for several variables, as detailed in the Synopsis.
  • To resolve some research questions, as presented in the Synopsis.
  • To give researchers sound tools on which to base their analysis of climate, hydrologic, pedological, ecological and agronomic droughts.
  • To provide a high level of abstraction and encapsulation for modelling services, so to allow improvements to parts of the DARTHs by anyone without disrupting the whole.
  • To give API and web services to final users, researchers, technical professionals, programmers, to connect their studies and products to the whole D4M, thus combatting the fragmentation of hydrological modelling through a participatory open platform.
Besides efficient algorithms, the effort will require the smart implementation of parallel computing infrastructures, which will remain mostly invisible to the users. All the infrastructure will be open source, built with open source tools and provided with open data.

The project was just submitted for the FIS call. Here below you find the proposal and the relevant annexes.
Compressing all the ideas in such a few words was quite difficult and the platform on which we had to upload the material with some issues (non accepting, for instance "()[]-/" and other characters. Some requirements quite stupid. The selection will be great. I obviously think that the gain for the country with such a project really great. Finger crossed and, if there are better projects, hope they'll win. 

No comments:

Post a Comment