Monday, September 7, 2015

Snow vs rain separation

Usually hydrologists talk of "precipitation" and are quite reticent to talk about its phase. This is because it is not easy to separate the snowfall and rainfall. In simple approaches, temperature alone is chosen as separator since ACOE (1956). However, temperature alone is not enough. As they say well Harder and Pomeroy (GS), 2014, and Ye (RG) et al., 2013.  However, we  still stick with the only temperature for practical purposes, and  because other solutions are unfeasible (missing data, tools or time to go deeply) or not so important. The core of this methods is to identify a threshold temperature over which precipitation is rain and above which precipitation is snow. Most of the time the two temperature (below and above which) are not the same. So we better talk of temperature thresholds.
Besides, researchers agree that these thresholds can vary from location to location, due to several meteorological and terrain factors.
A promising method that can potentially be used for making temperature thresholds variable in space in connection with the use of satellite data is proposed in the paper by Abera et al., 2015.
Waiting for it to be available, please find below a collection of papers on the topic. They, obviously contain further references.


Rerferences

ACOE, US Army Corps of Engineers. 1956. Snow Hydrology: Summary Report of the Snow Investigations. North Pacific Division; Portland, OR, 437.

AuerAH. 1974. The rain versus snow threshold temperatures. Weatherwise 27: 67.

Dai, A., 2008: Temperature and pressure dependence of the rain- snow phase transition over land and ocean. Geophys. Res. Lett., 35, L12802, doi:10.1029/2008GL033295.

Feiccabrino, J., & Lundberg, A. (2009). Precipitation Phase Discrimination in Sweden (pp. 1–16). Presented at the the 65th Eastern Snow Conference, 2008

Harder P, Pomeroy JW. 2013. Estimating precipitation phase using a psychrometric energy balance method. Hydrological Processes. DOI: 10.1002/hyp.9799

Harder, P., & Pomeroy, J. W. (2014). Hydrological model uncertainty due to precipitation-phase partitioning methods. Hydrological Processes, 28(14), 4311–4327. http://doi.org/10.1002/hyp.10214

Harpold, A. A., Kaplan, M. L., Klos, P. Z., Link, T., McNamara, J. P., Rajagopal, S., Schumer, R., and Steele, C. M.: Rain or snow: hydrologic processes, observations, prediction, and research needs, Hydrol. Earth Syst. Sci., 21, 1-22, doi:10.5194/hess-21-1-2017, 2017

Kavetski, D., Kuczera, G., & Franks, S. W. (2006). Calibration of conceptual hydrological models revisited: 1. Overcoming numerical artefacts. Journal of Hydrology, 320(1-2), 173–186. http://doi.org/10.1016/j.jhydrol.2005.07.012

Kienzle, S. W. (2008). A new temperature based method to separate rain and snow. Hydrological Processes, 22(26), 5067–5085. http://doi.org/10.1002/hyp.7131

Matsuo, T., Y. Sasyo, and Y. Sato, 1981: Relationship between types of precipitation on the ground and surface meteorological elements. J. Meteor. Soc. Japan, 59, 462–476.

Motoyama, H., 1990: Simulation of seasonal snow cover based on air temperature and precipitation. J. Appl. Meteor., 29, 1104– 1110.

Rohrer MD. 1989. Determination of the transition air temperature from snow to rain and intensity of precipitation. WMO TD No.328, International Workshop on Precipitation  Measurement (ed. by B. Sevruk), St. Moritz, Switzerland, (Instruments and Observing Methods Report No. 48), 475–482.

Steinacker R 1983. Diagnose und Prognose der Schneefallgrenze. Wetter
& Leben 35: 81–90.


Ye, H., Cohen, J., & Rawlins, M. (2013). Discrimination of Solid from Liquid Precipitation over, Northern Eurasia Using Surface Atmospheric Conditions, Journal of Hydrometeorology, 14, 1345–1356. http://doi.org/10.1175/JHM-D



4 comments:

  1. Thanks Riccardo for this very interesting and concise post.

    BTW, the link to the article of Abera et al., 2015 is not working properly....

    ReplyDelete
  2. Dear Mauricio,

    we are finalising that paper, and the manuscript will be available in few weeks.

    ReplyDelete
  3. Good blog, but separating the type of precipitation is much more peculiar. Apart from snow and rain, there are also:
    sleet, graupel , hail etc.

    In Atlantic maritime climate, the graupel are extremely common in winter and spring. In some places they are even more common than snow. There are various possible treatments. I have so far worked with the parametrization approach used in CSU-RAMS and Met Office LEM.
    There a couple of microphysics schemes that assume 2-moment distribution for each droplet phase and hydrometeors. Formulas for conversion are applied accordingly.

    Lin, Y. L., Farley, R. D., and Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. Journal of Climate and Applied Meteorology, 22(6), 1065-1092.

    Flatau, P.J. (1989). The CSU-RAMS cloud microphysics module: General theory and code documentation. Department of Atmospheric Science, Colorado State University

    Ferrier, B. S. (1994). A double-moment multiple-phase four-class bulk ice scheme. Part I: Description. Journal of the Atmospheric Sciences, 51 (2), pp.~249-280.

    Ferrier, B. S., Tao, W. K., and Simpson, J. (1995). A double-moment multiple-phase four-class bulk ice scheme. Part II: Simulations of convective storms in different large-scale environments and comparisons with other bulk parameterizations. Journal of the atmospheric sciences, 52 (8), pp.~1001-1033.

    ReplyDelete