Showing posts with label Hillslope stability. Show all posts
Showing posts with label Hillslope stability. Show all posts

Monday, October 17, 2016

Hillslope stability tools

Here I am on landslides. I gave some contributions to this topics, and I wrote also something about, however I never tried to put a list of models that can be used.

As a general reading I would suggest certainly 


It is one of the few books that have a modern approach to quantitative hillslope hydrology. Who starts from it, is already a few years behind others.  Fortunately, Ning Lu covered some of the book chapters in the summer school on landslides held in 2013, and you can also learn directly from his voice and video.

If you have red the book, you can then understand that having at least a 2D tool for assessing hillslope stability is a necessity that you cannot avoid. 

So here they are my favorite tools:

Jgrasstools (see also here) - They contain a SHALSTAB implementation that can be used for comparison. They also contains the necessary tools for terrain analysis. 
CISLAM -  model was originally implemented in R by Cristiano Lanni (GS), but it was ported to JGrasstools in a Google Summer of Code by Marco Foi. I cannot guarantee its quality, since I never used it, but it is built on the theory I co-developed with Cristiano that you can find addressed here. (Jgrasstools are migrated to the gvSIG 2.3 now or are available trough S.T.A.G.E.).

Boussinesq - This is not directly a tool for hillslope stability estimation. However, it serves to estimate the water content (neglecting at the moment, the vadose zone). There are two version of it:  a C version by Emanuele Cordano (stable and working) and a Java version by Francesco Serafin (that is in Java, for being inserted into OMS3, and still a project under construction).

RiDI. - This was developed by Fabio Ciervo in his Ph.D.  it has the peculiarity that it implements a double porosity soil water retention curve proposed by Nunzio Romano (GS) and coworkers.

GEOtop - It was used a lot to this scope, conjointly with simple and less simple hillslope stability analysis (we did some papers with it).

At present, all the tools require to become part of a consistent framework. But we (Giuseppe Formetta -GS-, Francesco Serafin and I) are working on it, looking forward to the next EGU General Assembly in Wien (April 2017). Stay tuned. 



Wednesday, October 8, 2014

CISLAM

CISLAM is the simplified hydrological model produced by Cristiano Lanni during his P.h. D which was devoted to the study of landslide triggering. The theory behind the code is commented in a Hydrological Processes Paper, and the original code was written in R, but Marco Foi ported it to the Jgrasstools during a fortunate Google Summer of Code.

  • The CISLAM Manual can be found here
  • Source code can be found here.


You can find a jar file ready to be used within a hacked version of JGrassTools 0.7.7: in fact, Marco had to modify a little JGrasstools to get it working. These changes were, so far, never introduced in version 0.8, and therefore for using CISLAM, it is necessary to use this version of JGrasstools: 


The tool has been tested to on the data set that can be found here, the same described in the manual. Other tests, would be necessary indeed. 

Friday, September 28, 2012

My Past Research on Shallow Landslide and Mass Flow Triggering


The role of hydrology in triggering mass movements was initially confronted with an implementation of the theories of Montgomery and Dietrich [1994] (MD), and the case of instability caused by surface runoff [A21, A26, A27].  The study then continued with the analysis of transient phenomena, that is the instabilities caused by the propagation of pressure waves in the unsaturated medium  [A31, A32], according to the theory by Iverson [2000] (I), and integrating  the two, MD1994 and I2000, views even in the case of rainfall of varying intensity [A21, J23].
Then, the simplified approach  (important in as so much as it highlighted some qualitative aspects of infiltration in the hillslopes) was supplanted by the use of the GEOtop model for the continual simulation of hydrological variables [A38, J26], and transient effects, within a minimal set of simplifications.  The use of GEOtop has allowed for the separation of the hydrological part, effectively modeled by GEOtop, and the geotechnical part, contained in the GEOtop-FS model [J26].  Particularly, the latter of these was the subject of a probabilistic treatment that introduced uncertainties into the main geotechnical parameters  [J26].
The paper [J26], and the thesis of Silvia Simoni introduced a systematic approach to the identification of areas of instability that made full use of the potential of on-site geophysical measurement campaigns and the a priori characterization of geotechnical properties of the soil in the laboratory, without using back analyses for the calibration of parameters as is generally done by simplified models.  The IRASMOS Reports [rep06, rep07 and rep08] represent a summary of the literature available on this subject which has been eventually refined in [rep09].


The most recent work  has been focused on trying to understand the dynamics of subsurface flow  in  by means of virtual experiments [A43] with GEOtop, and in more conceptualized terms to explicit the role of the variability of depth of soil [J33, J35, thesis of Cristiano Lanni]  with the model denominated CI-SLAM.  The result is the introduction of the concept of "hydrological connectivity" of the hillslopes, which is realized when a perched water table forms that covers the whole basin.  The connectivity concept bridged the gap between hillslope hydrology and basin hydrology, and has also consequences important for hillslopes' stability [J37]. In fact these concepts allows a better statistical identification of landslide areas, than previous similar models.  [J35] also contains a preliminary attempt to use the theories of self-organizing criticality in the context of instability propagation, which, evidently, heralds the actual landslide itself.

Paper [J46] faces the issues related to the choice of a certain parameterisation of the soil retention curves and analyses their relation to hillslope stability. It uses a new theory that uses double porosity, and estimates the stability with the use of the new theories by Lu, Likos and Godt.

References

In English:

[ J23] - D’Odorico, P., Fagherazzi G., Rigon R. Potential for landsliding: Dependenceon hyetograph characteristics J. Geophys. Res., Vol. 110, No. F1, F01007 10.1029/2004JF000127 10 February 2005

[J26] Simoni, S., F. Zanotti, G. Bertoldi and R. Rigon, Modelling the probability ofoccurrence of shallow landslides and channelized debris flows using GEOtop-FS, Hydrol. Process. 22, 532–545, 2008, DOI: 10.1002/hyp.6886

[J33] - Lanni, C.; McDonnell, J. J.; Rigon, R., On the relative role of upslope anddownslope topography for describing water flow path and storage dynamics:a theoretical analysis, Hydrological Processes Volume: 25 Issue: 25 Pages: 3909-3923, DEC 15 2011, DOI: 10.1002/hyp.8263

[J35] - Lanni C., J. McDonnell JJ, Hopp L., Rigon R., "Simulated effect of soil depthand bedrock topography on near-surface hydrologic response and slope stability" in EARTH SURFACE PROCESSES AND LANDFORMS, v. 2012, (In press). - URL: http://onlinelibrary.wiley.com/doi/10.1002/esp.3267/abstract . - DOI: 10.1002/esp.3267

[J37] Lanni C., Borga M., Rigon R., and Tarolli P., Modelling catchment-scale shallowlandslide occurrence by means of a subsurface flow path connectivity index, Hydrol. Earth Syst. Sci. Discuss., 9, 4101-4134, (in press at HESS)

[A31] - E. Cordano, P., Bartolini, Rigon R. A flexible numerical approach to solving a generalized Richards’ equation problem and some applications, 2004

[rep06]- Rigon R., Rickenmann D., Catalogue of causes and triggering thresholds (Ed), IRASMOS EU Project Deliverable 1.1, 2007

[rep07] - Rigon R. (Ed), State-of-the-art models: their transferability and model application, IRASMOS EU ProjectDeliverable 1.2, 2007

[rep08] - R. Rigon, State of the art of prediction techniques, IRASMOS EU Project Deliverable 1.3, 2007

[rep09] - R.Rigon, Franceschi, S., Monacelli, G., and Formetta, G., The triggering of landslides and debris flows and their mapping, Danube Flood Risk EU Project, 2012

[J46] - Ciervo F. ,  Casini F. , Papa M.N. ,  Rigon R., Some remarks on bimodality effects of the hydraulic properties on shear strength of unsaturated soils, Vadose Zone Hydrology, published electronically, doi:10.2136/vzj2014.10.0152, 2015

In Italian:

[A21] - D’Odorico, P., Fagherazzi S., Rigon R. Frane superficiali e idrologia deiversanti: Un possibile metodo di indagine. Atti del XXVIII Convegno di Idraulica e Costruzioni Idrauliche, vol. V, pp.177-184, 2002

[A26] - Tiso, C., Bertoldi G. and R. Rigon. Il modello Geotop-SF per la determinazione dell’nnesco di fenomeni di franamento e di colata. Atti del Convegno Iterpraevent 2004, Riva del Garda, 24-28 Maggio 2004

[A27] - Rigon, R., A. Cozzini, S. Pisoni, G. Bertoldi e A. Armanini. A new simple method for the determination of the triggering of debris flows. Atti del Convegno Interpraevent 2004, Riva del Garda, 24-28 Maggio 2004

[A32] - Cordano, E., Panciera R., Rigon R., Bartolini P. Sulla soluzione diffusiva dell’equazione di Richards. Atti del XXIX Convegno di Idraulica e Costruzioni Idrauliche, Settembre 2004

[A43] Lanni C., Cordano E., Rigon R., Tarantino A., Analysis of the effect of normaland lateral subsurface water flow on the triggering of shallow landslides witha distributed hydrological model. in from geomorphology mapping to dynamic modelling, Strasbourg: CERG, 2009. Atti di: A Tribute to Prof. Dr. Theo van ASCH, Strasbourg, 6th-7th February 2009

Wednesday, March 28, 2012

Modelling catchment-scale shallow landslide occurrence by means of a subsurface flow path connectivity index

This paper extends the concept already introduced in  two previous papers on Hydrological Processes  and Earth Surface Processes and landforms. The idea pursued in the first was that hillslope processes can be conceptualized in order to obtain a topographic index useful for a simple hydrological modelisation of hillslopes. The second paper investigates the role of soil depth and push further the conceptualization, besides introducing some concept of self-organization in the production of instabilities. 

This third paper in row applies the theory above to a case in North of Italy, and tries finally to fill the gap between hillslope modeling and catchment analysis. The paper also introduces the concept of catchment connectivity, which is usually given for granted but it is, indeed, not always present, and build on previou work by Jeff McDonnell and collaborators and Stuart Lane.  Finally the paper investigates the hillslope stability of the basins above.

The model described, CISLAM is available as an OMS component here

Tuesday, February 15, 2011

Indexing the water table position: Lanni, McDonnell and Rigon

The paper deals with the introduction of a new topographic index, i.e. an indicator of water table depth in a hillslope.
We need a simplified index for this job, since we are required to analyze large dataset at large resolution (i.e. an entire basin of thousands of square kilometers, or so, at 1 m or so of resolution). This is obviously an issue since many years, and many researchers tried to get solutions.
The first is the one based on the topographic index (TWI in our paper) by Beven and Kirby (1979), but also by O'Loughlin (1986), and used both in rainfall-runoff models (i.e. TOPMODEL) and hillslope stability analysis (i.e SHALSTAB, 1992 and 1994 and SINMAP, 1994). This index, is laregely applied (for instance in D'Odorico and Rigon, 2003, and in our software Peakflow, named after one other paper mentioned in this blog) but reveled insufficient mainly for three reasons:
1 - Barling and Grayson (1994), on the basis of kinematic concepts showed that seldom rainfall are long enough to bring a hillslope to the stationarity condition which is at the base of the derivation of the TWI. -
2 - Donwhill conditions count, as Jeff McDonnel l, and Jan Seibert, among others, showed in their papers;
3 - TWI also contains the assumption of the identification of topographical gradients with hydraulic head gradients: which is clearly not correct when there are discountinuos or so variations of slope from one pixel to a next-neighbor, since hydraulic potential tends to be continuous by definition.

We introduce here a new index that correspond to the complete perceptual model, and compare it to previous indexes and with simulation performed with a Boussinesq equation solver, used as the truth.


Having such an index would be profitable for rainfall-runoff models like Peakflow, or for modifying models like SHALSTAB and SINMAP in estimating hillslope instability.

Who is interested to know more can ask me or co-authors for copy of the draft.

References of the paper

Barling, R. D., Moore, I. D., Grayson, R. B., 1994. A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content. Water Resour. Res., 30, 4, doi: http://dx.doi.org/10.1029/93WR03346.

Beven KJ, Kirkby MJ. 1979. A physically based variable contributing area model of basin hydrology. Hydrology Science Bulletin 24(1):43–69.

Beven, K. and Freer, J. (2001), A dynamic TOPMODEL. Hydrological Processes, 15: 1993–2011. doi: 10.1002/hyp.252.

Beven, K. J., Lamb, R., Quinn, P. F., Romanowicz, R. & Freer, J. (1995) TOPMODEL (Chapter 18, pp. 627-668). In: Singh, V. P. (ed.) Computer models of watershed hydrology, Water Resources Publications, Highlands Ranch, Colorado, U.S.A., 1130 pp.

Borga M, Dalla Fontana G, Cazorzi F (2002) Analysis of topographic and climatologic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. J Hydrol 268:56–71.

Burt TP. Butcher DP. 1986. Development of topographic indices for use in semi-distributed hillslope runoff models. Zeitschift für Geomorphologue 58: 1–19.

Carson, M. A. and Kirkby, M. J. Cambridge, Hillslope form and process, England : University Press , 1972, 475 p.

Casadei, M., Dietrich, W. E. and Miller, N. L. (2003), Testing a model for predicting the timing and location of shallow landslide initiation in soil-mantled landscapes. Earth Surface Processes and Landforms, 28: 925–950. doi: 10.1002/esp.470.

Casulli, V. (2009), A high-resolution wetting and drying algorithm for free-surface hydrodynamics. International Journal for Numerical Methods in Fluids, 60: 391–408. doi: 10.1002/fld.1896

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20, pp. 37- 46.

Cordano, E., Rigon, R. A mass-conservative method for the integration of the two-dimensional
groundwater (Boussinesq) equation. Submitted Water Resour. Res.

Crave A, Gascuel-Odoux C. 1997. The influence of topography on time and space distribution of soil surface water content.Hydrological Processes 11: 203–210.

Detty, J. M., McGuire, K. J., 2010. Threshold changes in storm runoff generation at a till-mantled headwater catchment. Water Resour. Res., 46, 7, doi: 10.1029/2009WR008102.

Franchini M, Wendling J, Obled C, Todini E. 1996. Physical interpretation and sensitivity analysis of the TOPMODEL. Journal of Hydrology 175(1–4): 293–338.

Freer, J., J.J. McDonnell, K. J. Beven, N. E. Peters, D. A. Burns, R. P. Hooper, B. Aulenbach, and C. Kendall (2002).  The role of bedrock topography on subsurface storm flow.  Water Resources Research, 38(12): 5-1 - 5-16.

Grabs, T., J. Seibert, K. Bishop, H. Laudon, 2009. Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model, Journal of Hydrology, 373 (1-2), 15-23

Grayson, R. B., Terrain-based hydrologic modelling for erosion studies, Ph.D. thesis, 375 pp., Dept. of Civ. and Agric. Eng., The Univ. of Melbourne, Australia, 1990.

Grayson, R. B., I. D. Moore, and T. A. McMahon, Physically based hydrologic modeling, 1, A terrain-based model for investigative purposes, Water Resour. Res., 28(10), 2639-2658, 1992.

Grayson, R. and Western, A. (2001), Terrain and the distribution of soil moisture. Hydrological Processes, 15: 2689–2690. doi: 10.1002/hyp.479.

Güntner, A., J. Seibert, and S. Uhlenbrook, 2004. Modeling spatial patterns of saturated areas: An evaluation of different terrain indices, Water Resour. Res., 40, W05114, doi:10.1029/2003WR002864.

Haitjema, H.M., Mitchell-Bruker, S., Are water tables a subdued replica of the topography?, Ground Water 43 (6) (2005), pp. 781–786

Hjerdt, K. N., J. J. McDonnell, J. Seibert, and A. Rodhe, 2004. A new topographic index to quantify downslope controls on local drainage, Water Resour. Res., 40, W05602, doi:10.1029/2004WR003130.

I. Iorgulescu, J.-P. Jordan, Validation of TOPMODEL on a small Swiss catchment, Journal of Hydrology, Volume 159, Issues 1-4, July 1994, Pages 255-273, ISSN 0022-1694, DOI: 10.1016/0022-1694(94)90260-7.

J.P. Jordan, Spatial and temporal variability of stormflow generation processes on a Swiss catchment, Journal of Hydrology, Volume 153, Issues 1-4, January 1994, Pages 357-382, ISSN 0022-1694, DOI: 10.1016/0022-1694(94)90199-6.

Lane SN, Brookes CJ, Kirkby MJ, Holden J, 2004. A network-index-based version of TOPMODEL for use with high-resolution digital topographic data. Hydrological Processes 18: 191–201.

McDonnell, J.J., J. Freer, R. Hooper, C. Kendall, D. Burns and K. Beven (1996). New method developed for studying flow on hillslopes. EOS, 77(47): 465-472.

O'Callaghan, J. F., Mark, D. M., The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image Processing, Volume 28, Issue 3, December 1984, Pages 323-344, ISSN 0734-189X, DOI: 10.1016/S0734-189X(84)80011-0.

Orlandini, S., Moretti, G., 2009. Determination of surface flow paths from gridded elevation data, Water Resour. Res., 45, 3, doi: 10.1029/2008WR007099.

Orlandini, S., G. Moretti, M. Franchini, B. Aldighieri, and B. Testa (2003), Path-based methods for the determination of nondispersive drainage directions in grid-based digital elevation models, Water Resour. Res., 39(6), 1144, doi:10.1029/2002WR001639.

Quinn, P. F., K. J. Beven, P. Chevallier, and O. Planchon (1991), The prediction of hillslope flowpaths for distributed modelling using digital terrain models, Hydrol. Processes, 5, 59– 80.

Rodhe, A. and Seibert, J., 1999, Wetland occurrence in relation to topography - a test of topographic indices as moisture indicators, Agricultural and Forest Meteorology 98-99: 325-340.

Schmidt, F., and Persson, A, 2003, Comparison of DEM Data Capture and Topographic Wetness Indices, Precision Agricolture, 4, 179-192.

Seibert, J. 1999. On TOPMODEL's ability to simulate groundwater dynamics. In Regionalization in Hydrology (Proc. Conf. at Braunschweig, March 1997) . IAHS Publication 254: 211-220.

Seibert, J., and McGlynn, B.L., 2007. A new triangular multiple flow-direction algorithm for computing upslope areas from gridded digital elevation models, Water Resour. Res., 43, W04501, doi:10.1029/2006WR005128.

Seibert, J., A.Rodhe, K.Bishop, 2003. Simulating interactions between saturated and unsaturated storage in a conceptual runoff model, Hydrological Processes, 17: 379-390.

Seibert, J., Stendahl, J. and Sørensen, R., 2007. Topographical influences on soil properties in boreal forests, Geoderma, 141(1-2): 139-148.

Sørensen, R. and Seibert, J., 2007. Effects of DEM resolution on the calculation of topographical indices: TWI and its components, Journal of Hydrology, 347: 79-89.

Spearman, C., 1904, The proof and measurement of association between two things, Amer. J. Psychol., 15, pp. 72–101

Tarboton, D. G. (1997), A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resour. Res., 33(2), 309– 319.

Tetzlaff, D., McDonnell, J. J., Uhlenbrook, S., McGuire, K. J., Bogaart, P. W., Naef, F., Baird,
A. J., Dunn, S. M. and Soulsby, C. (2008), Conceptualizing catchment processes: simply too complex?. Hydrological Processes, 22: 1727–1730. doi: 10.1002/hyp.7069.

Tromp-van Meerveld, H. J., and McDonnell, J. J., 2006, Threshold relations in subsurface stormflow: 2. The fill and spill hypothesis, Water Resour. Res., 42, 2, doi: 10.1029/2004WR003800

Western, A. W., Bloschl, G., On the spatial scaling of soil moisture, Journal of Hydrology, Volume 217, Issues 3-4, 30 April 1999, Pages 203-224, ISSN 0022-1694, DOI: 10.1016/S0022-1694(98)00232-7.

Wolock, D. M., Price, C. V., 1994. Effects of digital elevation model map scale and data resolution on a topography-based watershed model, Water Resour. Res., 30, 11, doi: 10.1029/94WR01971.