Showing posts with label WATZON seminars. Show all posts
Showing posts with label WATZON seminars. Show all posts

Tuesday, October 5, 2021

The LysGEO modelling solution @ Italian Hydrological Society Hydrology days

 @ The Italian Hydrological Society Hydrology days, Concetta D'Amato presented her work on the LysGEO model. As some knows LysGEO put together the WHETGEO 1D component with the (revised) Prospero component. The first estimates infiltration, the second performs evaporation and transpiration. Together they constitute a soil-water-atmosphere model, that it is what LysGEO is. Or if you prefer, it is a tool to investigate the critical zone. 



LysGEO was already described elsewhere in the blog. However, in this case there is a relevant addition, derived from the work done utilizing the funding support of the WATSON cost action in Lausanne with Andrea Rinaldo e Paolo Benettin. They built a lysimeter whose seems to be the right experiment to test LysGEO. The presentation shows the first results (with almost no calibration). Clicking on the image above, you get the slides (in English). Here you can appreciate the presentation in Italian given by Concetta.   LysGEO is a product of the WATZON PRIN project.


Thursday, May 13, 2021

Evaporation and Transpiration

 Evaporation and transpiration are the topics more discussed in this blog, due to the interests I grew in the last few years (almost without publishing). However, I believe I collected enough information to be able to summarize a new view on these processes. Certainly shared with others, but not so widely shared, and not already present in other posts of this blog. In this presentation, that I shrinked in less than half an hour, I tried to summarize part of my current knowledge. For complimentary information, please see the lectures I gave at the GEOframe Winter School, or during the class of hydrology I do



The main result are a complete understanding of what the Penman-Monteith approach is, and that soil evaporation and transpiration can be differentiated from  the computational point of view because of the different dynamics of their energy and water budgets.

Wednesday, December 23, 2020

Lysimiter GEO - Webinar II - An exercise step by step

 This follows the first webinar on Lysimeter Pro, a GEOframe modelling solution intended to estimate the 1D soil-vegetation-atmosphere fluxes using the GEOframe WHETGEO and GEOframe Prospero tools. No more explanations are required than those you already find in the previous webinar and in the Jupyter Notebooks inside the  OMS3 project at here. The OMS project contains all the executable, however you have to do some installations before using the GEOframe working environment

Please find the video of the webinar below.

Executing Lysimeter GEO from Ri Rigon on Vimeo.

The previous webinar here.  For any question please do not exitate to contact us using the GEOframe users google group: https://groups.google.com/g/geoframe-components-users

Friday, December 18, 2020

Lysimiter GEO - Webinar I

 Land-Vegetation-Atmosphere interactions are an exciting field of Hydrology. Within our system GEOframe, one branch of work is improving the physics of GEOtop and this talk shows some of the work we made to this goal. Lysimiter GEO builds a virtual lysimiter and modeling infiltration and energy transfer in soil and evaporation and transpiration. The infiltration is modeled by the component WHETGEO 1D (Water, HEat and Transport in GEOframe) that integrates the 1D Richards developed by Niccolò Tubini. The evaporation and Transpiration are modeled by the GEOframe component Prospero  developed by Michele Bottazzi  in his Ph.D. Thesis.  Lysimeter GEO, however, was completed by Concetta D'Amato who is pursuing her Ph.D. on these topics within the PRIN project WATZON.By clicking on the Figure below you can access the slides. 

If you want to run Lysimeter GEO, you have first to install the GEOframe 2021 environment.  Here below, please find the video of the talk.  The OMS project for all the run can be found on OSF here



The second webinar containing an exercise did step by step is in this new post. 

Wednesday, November 11, 2020

Travel times and Residence Times explained

Long time ago it was believed that Residence times and travel times were the same concept. This is not true. Long time ago it was also assumed that they could be chosen as time invariant. Recent literature showed that this is not usually the case.  All of this is explained, hopefully in a clearly definitive way in the following presentation.


Yo can find it by clicking on the figure above. This presentation uses drawings, plots, in a way that it cannot be done in a paper (but would be useful sometimes) and can be considered to be a companion of part of our 2016 paper below. Other presentations will follow on the topics of response time and its relation to life expectation. The talk I gave for the WATZON project is here below

 

 

Rigon, Riccardo, Marialaura Bancheri, and Timothy R. Green. 2016. “Age-Ranked Hydrological Budgets and a Travel Time Description of Catchment Hydrology.” Hydrology and Earth System Sciences 20 (12): 4929–47.

Thursday, October 1, 2020

WATZON seminar series - I

 The Project WATZON  has almost finished the first year of work. It was a troubled year,  since the COVID-19 pandemic and we could not meet and do the field work required. However, we learn to use better the resources Internet brought to us. Upon the initiative of Paolo Nasta we started a series of on-line conferences on the tools and topics of the project. He is providing in these days seminars about the use of Hydrus-1D, a leading software for estimating infiltration by using Richards equation.  He accepted his material to be uploaded on my VIMEO WATZON Channel.



To interested people, Paolo suggest the following material

Lecture 1: Introduction to Hydrus-1D - First part

Lecture 2: Introduction to Hydrus-1D-Second part
Lecture 3: Treating tracers with Hydrus-1d
Lecture 4 - Going deeper isotope transport in Hydrus-1D
Paolo Nasta also wrote: "In the attached Excel file I extracted Fig.6 from the  Stumpp's paper. In this exercise we consider only delta18O transport. First of all, we all need to measure delta18O for each rainfall event. This is quite unfeasible. But...we need to sample rainfall as much as we can in order to make reliable interpolation of delta18O contents in ech daily rainfall episode! Stable isotopes of water are reported in the delta notation as the δ-content (‰), which is a relative deviation from the international standard V-SMOW (Vienna-Standard Mean Ocean Water). Mostly, the δ-content is negative. It is not possible to calculate with negative “concentrations” in HYDRUS-1D, and therefore, the user has to add an arbitrary value to all isotope data for the simulations (input and observation data). Do not take the absolute values though!
In the PRIN WATZON activities, we sample the isotope concentration in the rainfall (very frequently!), plant, soil (at different depths) and groundwater table sporadically (it means every two weeks hopefully). So we use rainfall-isotope conc. as input.
We use the other sporadic isotope concentrations (in soil, plant, groundwater) as observation data for inverse modeling in Hydrus-1D. In inverse modeling we optimize the unknown parameters related to water flow (vG parameters, Feddes parameters) and solute transport (dispersivity, solute root uptake etc.).
Once we get the optimized parameters, we can have fun and run long-term simulations with known precipitation, known rainfall-isotope and calculate soil residence time, or travel times from rainfall to transpired water or to groundwater in each site. Please, let me know. I think it is getting quite clear so far.
"