Showing posts with label benchmark papers. Show all posts
Showing posts with label benchmark papers. Show all posts

Friday, May 1, 2020

Three papers that affected my recent research

Stimulated by the quarantine and by chain letters regarding books or movies, by my FB friends, I tried to think to a similar chain for papers inviting research friends to expose five paper among those that they were important in recent years. My own five were:


But these go back quite in time and affected almost all of my research. So they do not count for the title. They are very recognized benchmark papers. Important for anyone.

The three are recent:




As in the tradition of these chains,  no explanations but the links to the papers, yes

Sunday, December 31, 2017

Baldocchi's Classics

I took the  freedom to reproduce Dennis Baldocchi's classic. The original post is on his website to which I dedicated another post. A must for who is interested in Soil-Vegetation-Atmosphere interactions.  I just added the link to the publications (on the title when pdf is open).
As a post of mine, it can be seen as a companion of the two recent posts on plant-atmosphere interactions where further references are presented (I and II).


Agriculture and Climate

1. Lobell, D.B., Schlenker, W. and Costa-Roberts, J., 2011. Climate trends and global crop production since 1980. Science, 333(6042): 616-20.

2. Lobell, D.B. and Gourdji, S.M., 2012. The influence of climate change on global crop productivity. Plant Physiology, 160(4): 1686-97.

3. Foley, J.A. et al., 2011. Solutions for a cultivated planet. Nature, 478(7369): 337-42.

4. Rosenzweig, C. and Parry, M.L., 1994. Potential impact of climate-change on world food-supply. Nature, 367(6459): 133-138.

Biogeochemistry

1. Bolin, B. and H. Rodhe. 1973. Note on Concepts of Age Distribution and Transit-Time in Natural Reservoirs. Tellus 25:58-62.

Boundary Layer Micrometeorology
1. Kaimal, J. C., Y. Izumi, J. C. Wyngaard, and R. Cote. 1972. Spectral Characteristics of Surface-Layer Turbulence. Quarterly Journal of the Royal Meteorological Society 98:563-&.

2. Hogstrom, U. 1988. Non-Dimensional Wind and Temperature Profiles in the Atmospheric Surface-Layer - a Re-Evaluation. Boundary-Layer Meteorology 42:55-78.
https://link.springer.com/article/10.1007%2FBF00119875?LI=true

3. Kaimal, J. C. and J. C. Wyngaard. 1990. The Kansas and Minnesota Experiments. Boundary-Layer Meteorology 50:31-47.
https://link.springer.com/article/10.1007/BF00120517

4. Wyngaard, J.C., 1992. Atmospheric-Turbulence. Annual Review of Fluid Mechanics, 24: 205-233.
http://www.annualreviews.org/doi/abs/10.1146/annurev.fl.24.010192.001225

5. Hogstrom, U. 1996. Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorology 78:215-246.
https://link.springer.com/article/10.1007%2FBF00120937?LI=true

6. Foken, T., 2006. 50 Years of the Monin–Obukhov Similarity Theory. Boundary-Layer Meteorology, 119(3): 431-447.

7. Wyngaard, J. C. 1990. Scalar Fluxes in the Planetary Boundary-Layer - Theory, Modeling, and Measurement. Boundary-Layer Meteorology 50:49-75.
https://link.springer.com/article/10.1007/BF00120518

Canopy Conductance

1. Finnigan, J. J. and M. R. Raupach. 1987. Transfer processes in plant canopies in relation to stomatal characteristics. Pages 385-429 in E. Zeiger, editor. Stomatal Function. Stanford University Press, Palo Alto, CA.

2. Raupach, M.R., 1995. Vegetation-atmosphere interaction and surface conductance at leaf, canopy and regional scales. Agricultural and Forest Meteorology, 73(3-4): 151-179.

3. Kelliher, F.M., Leuning, R., Raupach, M.R. and Schulze, E.-D., 1995. Maximum conductances for evaporation from global vegetation types. Agricultural and Forest Meteorology, 73(1-2): 1-16.

Canopy micrometeorology and turbulence

1. Denmead, O. T. and E. F. Bradley. 1987. On Scalar Transport in Plant Canopies. Irrigation Science 8:131-149.
https://link.springer.com/article/10.1007/BF00259477

2. Finnigan, J., 2000. Turbulence in Plant Canopies. Annu. Rev. Fluid Mech., 32(1): 519-571.

3. Raupach, M.R. and Thom, A.S., 1981. Turbulence in and above Plant Canopies. Annual Review of Fluid Mechanics, 13: 97-129.
http://www.annualreviews.org/doi/abs/10.1146/annurev.fl.13.010181.000525?journalCode=fluid

4. Raupach, M. R., J. J. Finnigan, and Y. Brunet. 1996. Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Boundary-Layer Meteorology 78:351-382.
https://link.springer.com/article/10.1007/BF00120941


CO2 Fluxes, Pioneering Studies


1. Monteith, J. L. and G. Szeicz. 1960. et. Quarterly Journal of the Royal Meteorological Society 86:205-214.
http://onlinelibrary.wiley.com/doi/10.1002/qj.49708636810/abstract


J2. Desjardins, R. 1974. Technique to Measure Co2 Exchange under Field Conditions. International Journal of Biometeorology 18:76-83.
https://link.springer.com/article/10.1007/BF01450667


3. Anderson, D. E., S. B. Verma, and N. J. Rosenberg. 1984. Eddy-correlation measurements of CO2, latent-heat, and sensible heat fluxes over a crop surface. Boundary-Layer Meteorology 29:263-272.


CO2 Fluxes, syntheses


1. Baldocchi, D.D., 2008. TURNER REVIEW No. 15. 'Breathing' of the terrestrial biosphere: lessons learned from a global network of carbon dioxide flux measurement systems. Australian Journal of Botany 56, 1-26.

2. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834-838.

3. Luyssaert, S., Inglima, I., Jung, M., Richardson, A.D., Reichsteins, M., Papale, D., Piao, S.L., Schulzes, E.D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beers, C., Bernhoffer, C., Black, K.G., Bonal, D., Bonnefond, J.M., Chambers, J., Ciais, P., Cook, B., Davis, K.J., Dolman, A.J., Gielen, B., Goulden, M., Grace, J., Granier, A., Grelle, A., Griffis, T., Grunwald, T., Guidolotti, G., Hanson, P.J., Harding, R., Hollinger, D.Y., Hutyra, L.R., Kolar, P., Kruijt, B., Kutsch, W., Lagergren, F., Laurila, T., Law, B.E., Le Maire, G., Lindroth, A., Loustau, D., Malhi, Y., Mateus, J., Migliavacca, M., Misson, L., Montagnani, L., Moncrieff, J., Moors, E., Munger, J.W., Nikinmaa, E., Ollinger, S.V., Pita, G., Rebmann, C., Roupsard, O., Saigusa, N., Sanz, M.J., Seufert, G., Sierra, C., Smith, M.L., Tang, J., Valentini, R., Vesala, T., Janssens, I.A., 2007. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology 13, 2509-2537.

Dry Deposition

1. Wesely, M. L. and B. B. Hicks. 2000. A review of the current status of knowledge on dry deposition. Atmospheric Environment 34:2261-2282.
http://www.sciencedirect.com/science/article/pii/S1352231099004677

2. Wesely, M. L. 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment 23:1293-1304.

3.Wesely, M. L. and B. B. Hicks. A review of current status of knowledge on dry deposition, 2000 Atmospheric Environment 34:2261-2282.
http://www.sciencedirect.com/science/article/pii/S1352231099004677

4. Fowler, D., K. Pilegaard, M. A. Sutton, P. Ambus, M. Raivonen, J. Duyzer, D. Simpson, H. Fagerli, S. Fuzzi, J. K. Schjoerring, C. Granier, A. Neftel, I. S. A. Isaksen, P. Laj, M. Maione, P. S. Monks, J. Burkhardt, U. Daemmgen, J. Neirynck, E. Personne, R. Wichink-Kruit, K. Butterbach-Bahl, C. Flechard, J. P. Tuovinen, M. Coyle, G. Gerosa, B. Loubet, N. Altimir, L. Gruenhage, C. Ammann, S. Cieslik, E. Paoletti, T. N. Mikkelsen, H. Ro-Poulsen, P. Cellier, J. N. Cape, L. Horváth, F. Loreto, Ü. Niinemets, P. I. Palmer, J. Rinne, P. Misztal, E. Nemitz, D. Nilsson, S. Pryor, M. W. Gallagher, T. Vesala, U. Skiba, N. Brüggemann, S. Zechmeister-Boltenstern, J. Williams, C. O'Dowd, M. C. Facchini, G. de Leeuw, A. Flossman, N. Chaumerliac, and J. W. Erisman. 2009. Atmospheric composition change: Ecosystems–Atmosphere interactions. Atmospheric Environment 43:5193-5267.
http://www.sciencedirect.com/science/article/pii/S1352231009006633


Ecosystem Atmosphere Interactions

1. Watson, A. and J. Lovelock. 1983. Biological homeostasis of the global environment: the parable of Daisyworld. Tellus 35b:286-289.

2. Odum, E. P. 1969. Strategy of Ecosystem Development. Science 164:262-270.


Ecosystem Structure and Function

1. Van Bodegom, P. M., J. C. Douma, J. P. M. Witte, J. C. Ordoñez, R. P. Bartholomeus, and R. Aerts. 2012. Going beyond limitations of plant functional types when predicting global ecosystem-atmosphere fluxes: exploring the merits of traits-based approaches. Global Ecology and Biogeography 21:625-636.
http://onlinelibrary.wiley.com/doi/10.1111/j.1466-8238.2011.00717.x/abstract

2. Reich, P. B., M. B. Walters, and D. S. Ellsworth. 1997. From tropics to tundra: Global convergence in plant functioning. PNAS 94:13730-13734.

3. Wright, I. J., P. B. Reich, M. Westoby, D. D. Ackerly, Z. Baruch, F. Bongers, J. Cavender-Bares, F. A. Chapin, J. H. C. Cornelissen, M. Diemer, J. Flexas, E. Garnier, P. K. Groom, J. Gulias, K. Hikosaka, B. B. Lamont, T. Lee, W. Lee, C. Lusk, J. J. Midgley, M.-L. Nava, Ü. Niinemets, J. Oleksyn, N. Osada, H. Poorter, P. Poot, L. Prior, V. I. Pyankov, C. Roumet, S. C. Thomas, M. G. Tjoelker, E. J. Veneklaas, and R. Villar. 2004. The worldwide leaf economics spectrum. Nature 428:821-827.

Eddy Covariance Flux measurements

1. Moore, C. J. 1986. Frequency response corrections for eddy covariance systems. Boundary Layer Meteorology 37:17-35.

2. McMillen, R. T. 1988. An Eddy-Correlation Technique with Extended Applicability to Non-Simple Terrain. Boundary-Layer Meteorology 43:231-245.
https://link.springer.com/article/10.1007%2FBF00128405?LI=true

3. Baldocchi, D. D., B. B. Hicks, and T. P. Meyers. 1988. Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology. 69:1331-1340.

4. Foken, T. and B. Wichura. 1996. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology 78:83-105.
http://www.sciencedirect.com/science/article/pii/0168192395022481

5. Aubinet, M. et al., 2000. Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Advances in Ecological Research, 30: 113-175.
http://www.sciencedirect.com/science/article/pii/S0065250408600185

6. Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems:past, present and future. Global Change Biol, 9: 479-492.

7. Lee, X.H., Massman, W.J., 2011. A Perspective on Thirty Years of the Webb, Pearman and Leuning Density Corrections. Boundary-Layer Meteorology 139, 37-59.

Energetics of crop production

1. Monteith, J. L. 1977. Climate and Efficiency of Crop Production in Britain. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 281:277-294.

2. Loomis, R. S. 1971. Agricultural Productivity. Annual Review of Plant Physiology 22:431-&.
http://www.annualreviews.org/doi/pdf/10.1146/annurev.pp.22.060171.002243

3. Lemon, E., D. W. Stewart, and Shawcroft, R.W.. 1971. Sun work in a cornfield. Science 174:371
http://science.sciencemag.org/content/174/4007/371


Energy Balance Closure



1. Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., Ceulemans, R., Dolman, H., Field, C., 2002. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology 113, 223-243.

2. Foken, T. 2008. The energy balance closure problem: An overview. Ecological Applications 18:1351-1367.

3. Leuning, R., van Gorsel, E., Massman, W.J., Isaac, P.R., 2012. Reflections on the surface energy imbalance problem. Agricultural and Forest Meteorology 156, 65-74.

Evaporation

1. Monteith, J. L. 1965. Evaporation and Environment. Pages 205-234 Symposium Society of Experimental Biology XIX.

2. Monteith, J. L. 1981. Evaporation and Surface-Temperature. Quarterly Journal of the Royal Meteorological Society 107:1-27.

3. Jarvis, P.G. and McNaughton, K.G., 1986. Stomatal Control of Transpiration - Scaling up from Leaf to Region. Advances in Ecological Research, 15: 1-49.
https://www.sciencedirect.com/science/article/pii/S0065250408601191

4. Raupach, M.R., 2001. Combination theory and equilibrium evaporation. Quarterly Journal of the Royal Meteorological Society, 127(574): 1149-1181.
http://onlinelibrary.wiley.com/doi/10.1002/qj.49712757402/full

5. Shuttleworth, W.J., 2007. Putting the 'vap' into evaporation. Hydrology and Earth System Sciences 11, 210-244.

6. Katul, G. G., R. Oren, S. Manzoni, C. Higgins, and M. B. Parlange. 2012. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system.
Reviews of Geophysics 50.

Flux Footprint

1. Schmid, H. P. 2002. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. Agricultural and Forest Meteorology 113:159-183.

2. Vesala, T., U. Rannik, M. Leclerc, T. Foken, and K. Sabelfeld. 2004. Flux and concentration footprints. Agricultural and Forest Meteorology 127:111-116.

3. Hsieh, C. I. and G. Katul. 2009. The Lagrangian stochastic model for estimating footprint and water vapor fluxes over inhomogeneous surfaces. International Journal of Biometeorology 53:87-100.

Flux Processing, Partitioning and Gap filling

1. Falge, E., D. Baldocchi, R. Olson, P. Anthoni, M. Aubinet, C. Bernhofer, G. Burba, R. Ceulemans, R. Clement, and H. Dolman. 2001. Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology 107:71-77.

2. Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., Granier, A., Grunwald, T., Havrankova, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., Seufert, G., Vaccari, F., Vesala, T., Yakir, D., Valentini, R., 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1429.
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2005.001002.x/abstract

3. Moffat, A.M., Papale, D., Reichstein, M., Hollinger, D.Y., Richardson, A.D., Barr, A.G., Beckstein, C., Braswell, B.H., Churkina, G., Desai, A.R., Falge, E., Gove, J.H., Heimann, M., Hui, D., Jarvis, A.J., Kattge, J., Noormets, A., Stauch, V.J., 2007. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology 147, 209-232.


Gross Primary Production from Remote Sensing, Regional and Global Upscaling


1. Running, S. W., D. D. Baldocchi, D. Turner, S. T. Gower, P. Bakwin, and K. Hibbard (1999), A global terrestrial monitoring network, scaling tower fluxes with ecosystem modeling and EOS satellite data, Remote Sensing of the Environment., 70, 108-127.

2. Anav, A., P. Friedlingstein, C. Beer, P. Ciais, A. Harper, C. Jones, G. Murray-Tortarolo, D. Papale, N. C. Parazoo, P. Peylin, S. Piao, S. Sitch, N. Viovy, A. Wiltshire, and M. Zhao. 2015. Spatiotemporal patterns of terrestrial gross primary production: A review. Reviews of Geophysics: doi 10.1002/2015RG000483.

3. Xiao, X., C. Jin, and J. Dong. 2014. Gross Primary Production of Terrestrial Vegetation. Pages 127-148 in J. M. Hanes, editor. Biophysical Applications of Satellite Remote Sensing. Springer Berlin Heidelberg.
https://link.springer.com/chapter/10.1007/978-3-642-25047-7_5

4. Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rodenbeck, C., Arain, M.A., Baldocchi, D., Bonan, G.B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K.W., Roupsard, O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F.I., Papale, D., 2010. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 329, 834-838.


Hyperspectral remote sensing and surface Fluxes

1. Gamon, J. A., et al. (2011), SpecNet revisited: bridging flux and remote sensing communities, Canadian Journal of Remote Sensing, 36, S376-S390.
http://www.tandfonline.com/doi/abs/10.5589/m10-067?journalCode=ujrs20

2. Ustin, S. L., D. A. Roberts, J. A. Gamon, G. P. Asner, and R. O. Green. 2004. Using imaging spectroscopy to study ecosystem processes and properties. Bioscience 54:523-534.


3. Porcar-Castell, A., E. Tyystjarvi, J. Atherton, C. van der Tol, J. Flexas, E. E. Pfundel, J. Moreno, C. Frankenberg, and J. A. Berry. 2014. Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: mechanisms and challenges. Journal of Experimental Botany 65:4065-4095.

Instruments

1. Wyngaard, J. C. 1981. Cup, Propeller, Vane, and Sonic Anemometers in Turbulence Research. Annual Review of Fluid Mechanics 13:399-423.
http://www.annualreviews.org/doi/abs/10.1146/annurev.fl.13.010181.002151?journalCode=fluid

2. Werle, P., F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker. 2002. Near- and mid-infrared laser-optical sensors for gas analysis. Optics and Lasers in Engineering 37:101-114.

3. Long, S. P., P. K. Farage, and R. L. Garcia. 1996. Measurement of leaf and canopy photosynthetic CO2 exchange in the field. Journal of Experimental Botany 47:1629-1642.


Land-Atmosphere-Climate Interactions

1. Dickinson, R. E. 1983. Land surface processes and climate-surface albedos and energy balance. Advances in Geophysics 25:305-353.
http://www.sciencedirect.com/science/article/pii/S0065268708601764

2. Sellers, P.J. et al., 1997. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275(5299): 502-509.

3. Bonan, G. B., K. W. Oleson, M. Vertenstein, S. Levis, X. B. Zeng, Y. J. Dai, R. E. Dickinson, and Z. L. Yang. 2002. The land surface climatology of the community land model coupled to the NCAR community climate model. Journal of Climate 15:3123-3149.

4. Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444-1449.

5. Jackson, R. B., J. T. Randerson, J. G. Canadell, R. G. Anderson, R. Avissar, D. D. Baldocchi, G. B. Bonan, K. Caldeira, N. S. Diffenbaugh, C. B. Field, B. A. Hungate, E. G. Jobb, Protecting climate with forests, Environmental Research Letters, 3, 4, 2008

6. Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K. Snyder. 2005. Global consequences of land use. Science 309:570-574.


Leaf Area Index and Canopy Structure

1. Wilson, J. W. 1965. Stand Structure and Light Penetration. I. Analysis by Point Quadrats. Journal of Applied Ecology 2:383-390.
https://www.jstor.org/stable/2401487?seq=1#page_scan_tab_contents

2. Lang, A. R. G. 1987. Simplified estimate of leaf area index from transmittance of the sun's beam. Agricultural and Forest Meteorology 41:179-186.
http://www.sciencedirect.com/science/article/pii/0168192387900785

3. Chen, J.M., 1996. Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80(2-4): 135-163.

4. Lefsky, M. A., W. B. Cohen, G. Parker, and D. J. Harding. 2002. Lidar remote sensing for ecosystem studies. Bioscience 52:19-30.

5. Jonckheere, I. et al., 2004. Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1-2): 19-35.

6. Ryu, Y., Sonnentag, O., Nilson, T., Vargas, R., Kobayashi, H., Wenk, R., Baldocchi, D.D., 2010. How to quantify tree leaf area index in an open savanna ecosystem: A multi-instrument and multi-model approach. Agricultural and Forest Meteorology 150, 63-76.


Leaf Boundary Layers

1. Leuning, R. 1983. Transport of Gases into Leaves. Plant Cell and Environment 6:181-194
http://onlinelibrary.wiley.com/doi/10.1111/1365-3040.ep11587617/abstract

2. Schuepp, P., 1993. Tansley Review No. 59. Leaf Boundary Layers. New Phytologist 125, 477-507.


Leaf Energy Balance


1. Paw U, K. T. and W. Gao. 1988. Applications of solutions to non-linear energy budget equations. Agricultural and Forest Meteorology 43:121-145.
http://www.sciencedirect.com/science/article/pii/0168192388900871

2. Leuning, R. 1989. Leaf Energy Balances - Developments and Applications. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 324:191-206.


Leaf photosynthesis/transpiration/stomatal conductance models
1. Jarvis, P. G. 1976. Interpretation of Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in Field. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 273:593-610.

2. Farquhar, G. D., S. V. Caemmerer, and J. A. Berry. 1980. A Biochemical-Model of Photosynthetic Co2 Assimilation in Leaves of C-3 Species. Planta 149:78-90.

3. Farquhar, G.D. and Sharkey, T.D., 1982. Stomatal Conductance and Photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 33: 317-345.
http://www.annualreviews.org/doi/abs/10.1146/annurev.pp.33.060182.001533?journalCode=arplant.1

4. Collatz, G.J., Ball, J.T., Grivet, C. and Berry, J.A., 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54(2-4): 107-136.
http://www.sciencedirect.com/science/article/pii/0168192391900028

5. Leuning, R., 1995. A Critical-Appraisal of a Combined Stomatal-Photosynthesis Model for C-3 Plants. Plant Cell and Environment, 18(4): 339-355.
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00370.x/abstract


Leaf-Canopy Modeling, Carbon, Water and Heat Fluxes and Microclimate
1. DeWit, C. T. 1965. Photosynthesis of leaf canopies. Centre for Agricultural Publications and Documentation.

2. Duncan, W. G., R. S. Loomis, W. A. Williams, and R. Hanau. 1967. A Model for Simulating Photosynthesis in Plant Communities. Hilgardia 38:181-&.

3. Sinclair, T. R., C. E. Murphy, and K. R. Knoerr. 1976. Development and Evaluation of Simplified Models for Simulating Canopy Photosynthesis and Transpiration. Journal of Applied Ecology 13:813-829.
http://www.jstor.org/stable/2402257?seq=1#page_scan_tab_contents

4. Goudriaan, J. 1977. Crop micrometeorology: a simulation study.

5. Norman, J.M., 1979. Modeling the complete crop canopy. In: B.J. Barfield and J.F. Gerber (Editor), Modification of the aerial environment of plants. , American Society of Agricultural Engineering, St. Joseph, MI, pp. 249
https://www.abebooks.com/9780916150150/Modification-Aerial-Environment-Plants-ASAE-0916150151/plp

6. Raupach, M.R. and Finnigan, J.J., 1988. Single-Layer Models of Evaporation from Plant Canopies Are Incorrect but Useful, Whereas Multilayer Models Are Correct but Useless - Discuss. Australian Journal of Plant Physiology, 15(6): 705-716.
http://www.publish.csiro.au/fp/PP9880705

7. Baldocchi, D. D. and P. C. Harley. 1995. Scaling carbon dioxide and water vapor exchange from leaf to canopy in a deciduous forest: model testing and application. Plant, Cell and Environment 8:1157-1173.
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-3040.1995.tb00625.x/abstract

8. dePury, D. G. G. and G. D. Farquhar. 1997. Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models. Plant Cell and Environment 20:537-557.

9. Amthor, J. S. 1994. Scaling Co2-Photosynthesis Relationships from the Leaf to the Canopy. Photosynthesis research 39:321-350.
https://link.springer.com/article/10.1007/BF00014590

Methane

1. Cicerone, R.J. and Oremland, R.S., 1988. Biogeochemical aspects of atmospheric methane. Global Biogeochem. Cycles, 2: 299-327.

2. Conrad, R., 1989. Control of methane production in terrestrial ecosystems. In: M.O. Andreae and D.S. Schimel (Editors), Exchange of Trace Gases between Terrestrial Ecosystems and the Atmosphere. Wiley, Chichester, UK, pp. 39-58.
https://www.amazon.com/Exchange-Terrestrial-Ecosystems-Atmosphere-Workshop/dp/0471925519

3. Conrad, R., 1996. Soil microorganisms as controllers of atmospheric trace gases (H-2, CO, CH4, OCS, N2O, and NO). Microbiological Reviews, 60(4): 609-+.

4. Whalen, S.C., 2005. Biogeochemistry of Methane Exchange between Natural Wetlands and the Atmosphere. Environmental Engineering Science, 22(1): 73-94.
http://online.liebertpub.com/doi/pdf/10.1089/ees.2005.22.73

5. Bridgham, S. D., H. Cadillo-Quiroz, J. K. Keller, and Q. L. Zhuang. 2013. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Global Change Biology 19:1325-1346.

Phenology

1. Richardson, A. D., T. F. Keenan, M. Migliavacca, Y. Ryu, O. Sonnentag, and M. Toomey. 2013. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agricultural and Forest Meteorology 169:156-173.

2. Kramer, K., I. Leinonen, and D. Loustau. 2000. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean ecosystems, an overview. International Journal of Biometeorology 44:67-75.

3. Menzel, A., T. H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-KÜBler, P. Bissolli, O. G. BraslavskÁ, A. Briede, F. M. Chmielewski, Z. Crepinsek, Y. Curnel, Å. Dahl, C. Defila, A. Donnelly, Y. Filella, K. Jatczak, F. MÅGe, A. Mestre, Ø. Nordli, J. PeÑUelas, P. Pirinen, V. RemiŠOvÁ, H. Scheifinger, M. Striz, A. Susnik, A. J. H. Van Vliet, F.-E. Wielgolaski, S. Zach, and A. N. A. Zust. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12:1969-1976.


Planetary Boundary Layer and Surface Flux Feedbacks
1. McNaughton, K.G. and Spriggs, T.W., 1986. A Mixed-Layer Model for Regional Evaporation. Boundary-Layer Meteorology, 34(3): 243-262.
https://link.springer.com/article/10.1007%2FBF00122381?LI=true

2. Raupach, M.R., 1998. Influences of local feedbacks on land-air exchanges of energy and carbon. Global Change Biology, 4(5): 477-494.
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2486.1998.t01-1-00155.x/abstract

3. Juang, J.-Y., G. Katul, M. Siqueira, P. Stoy, and K. Novick. 2007. Separating the effects of albedo from eco-physiological changes on surface temperature along a successional chronosequence in the southeastern United States. Geophysical Research Letters 34.

4. van Heerwaarden, C. C., J. Vilà-Guerau de Arellano, A. F. Moene, and A. A. M. Holtslag. 2009. Interactions between dry-air entrainment, surface evaporation and convective boundary-layer development. Quarterly Journal of the Royal Meteorological Society 135:1277-1291.

5. Juang, J. Y., G. G. Katul, A. Porporato, P. C. Stoy, M. S. Siqueira, M. Detto, H. S. Kim, and R. Oren. 2007. Eco-hydrological controls on summertime convective rainfall triggers. Global Change Biology 13:887-896.

6. Juang, J. Y., G. G. Katul, A. Porporato, P. C. Stoy, M. S. Siqueira, M. Detto, H. S. Kim, and R. Oren. 2007. Eco-hydrological controls on summertime convective rainfall triggers. Global Change Biology 13:887-896.


Radiative Transfer in vegetation (Phytoactinometry)

1. Lemeur, R. and Blad, B.L., 1974. A critical review of light models for estimating the shortwave radiation regime of plant canopies. Agricultural Meteorology, 14(1-2): 255-286.
http://www.sciencedirect.com/science/article/pii/0002157174900247

2. Ross, J., 1976. Radiative Transfer in Plant Communities. In: J.L. Monteith (Editor), Vegetation and the Atmosphere, vol 1. Academic Press, London.
https://www.cambridge.org/core/journals/experimental-agriculture/article/vegetation-and-the-atmosphere-ed-monteith-j-l-london-academic-press-1975-vol-1-principles-pp-298-10-vol-2-case-studies-pp-459-15/04F40452ABFD73983036C698417851F1
(https://jrls2017.to.ee/download/m59a7aaf73b44f)

3. Ross, J. 1980. The Radiation Regime and Architecture of Plant Stands. Dr. W Junk, The Hague. http://link.springer.com/book/10.1007%2F978-94-009-8647-3

4. Myneni, R.B., Ross, J. and Asrar, G., 1989. A review on the theory of photon transport in leaf canopies. Agricultural and Forest Meteorology, 45(1-2): 1-153.
http://www.sciencedirect.com/science/article/pii/0168192389900026

5. Ustin, S. L., S. Jacquemoud, and Y. Govaerts. 2001. Simulation of photon transport in a three-dimensional leaf: implications for photosynthesis. Plant Cell Environ 24:1095-1103.

6. Jacquemoud, S., W. Verhoef, F. Baret, C. Bacour, P. J. Zarco-Tejada, G. P. Asner, C. Francois, and S. L. Ustin. 2009. PROSPECT plus SAIL models: A review of use for vegetation characterization. Remote Sensing of Environment 113:S56-S66.


Scientific Method


1. Tuomivaara, T., P. Hari, H. Rita, and R. Hakkinen. 1994. The guide-dog approach: a methodology for ecology. Department of Forest Ecology publications.


Soil Respiration


1. Raich, J., Schlesinger, W., 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B, 81 - 90.

2. Trumbore, S., 2009. Radiocarbon and Soil Carbon Dynamics. Annu. Rev. Earth Planet. Sci. Annual Reviews, Palo Alto, pp. 47-66.

3. Kuzyakov, Y., Gavrichkova, O., 2010. REVIEW: Time lag between photosynthesis and carbon dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology 16, 3386-3406.
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2486.2010.02179.x/abstract

Soil Respiration, Flux-Gradient and Chamber measurements


1. Livingston, G.P. and Hutchinson, G.L., 1995. Enclosure-based measurement of trace gas exchange: Applications and sources of error. In: R.C. Harriss (Editor), Biogenic trace gases: Measuring emissions from soil and water. Blackwell Scientific, London, pp. 14-51.

2. Hutchinson, G.L. and Rochette, P., 2003. Non-Flow-Through Steady-State Chambers for Measuring Soil Respiration: Numerical Evaluation of Their Performance. Soil Sci Soc Am J, 67(1): 166-180.

3. Maier, M., and H. Schack-Kirchner (2014), Using the gradient method to determine soil gas flux: A review, Agricultural and Forest Meteorology, 192


Soil-Plant-Atmosphere Continuum

1. Shawcroft, R. W., E. R. Lemon, L. H. Allen, D. W. Stewart, and S. E. Jensen. 1974. SOIL-PLANT-ATMOSPHERE MODEL AND SOME OF ITS PREDICTIONS. Agricultural Meteorology 14:287-307.

2. Jarvis, P. G., W. R. N. Edwards, and H. Talbot. 1981. Models of Plant and Crop Water Use. Pages 151-193 in D. A. Rose and D. A. Charles-Edwards, editors. Mathematics and Plant Physiology. Academic Press, London.

3. Tuzet, A., A. Perrier, and R. Leuning. 2003. A coupled model of stomatal conductance, photosynthesis and transpiration. Plant Cell and Environment 26:1097-1116.

4. Katul, G., R. Leuning, and R. Oren. 2003. Relationship between plant hydraulic and biochemical properties derived from a steady-state coupled water and carbon transport model. Plant Cell Environ 26:339-350.


Soils, moisture, heat, CO2

1. Clapp, R.B. and Hornberger, G.M., 1978. Empirical Equations for Some Soil Hydraulic-Properties. Water Resources Research, 14(4): 601-604.

2. van Genuchten, M.T. and Sudicky, E.A., 1999. Recent advances in Vadose zone flow and transport modeling. In: M. Parlange and J.W. Hopmans (Editors), Vadose Zone Hydrology. Oxford Press, New York, pp. 155-193.
https://www.amazon.com/Vadose-Zone-Hydrology-Cutting-Disciplines/dp/0195109902

3. Simunek, J. and Suarez, D.L., 1993. Modeling of carbon-dioxide transport and production in soil. 1. Model development. Water Resources Research, 29: 487-497.


Stable isotopes

1. Bowling, D.R., Pataki, D.E., Randerson, J.T., 2008. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytologist 178, 24-40.

2. Dawson, T.E., Mambelli, S., Plamboeck, A.H., Templer, P.H., P.Tu, K., 2002. Stable isotope in plant ecology. Annual Review Ecology Systematics 33, 507-559.

3. Griffis, T. J. (2013), Tracing the flow of carbon dioxide and water vapor between the biosphere and atmosphere: A review of optical isotope techniques and their application, Agricultural and Forest Meteorology, 174
http://www.sciencedirect.com/science/article/pii/S0168192313000373


Stomatal Optimization Models


1. Cowan, I. and G. Farquhar. 1977. Stomatal function in relation to leaf metabolism and environment. Symposium of the Society of Experimental Biology 31:471-505.

2. Hari, P., A. Makela, E. Korpilahti, and M. Holmberg. 1986. Optimal control of gas exchange. Tree Physiology 2:169-175.
https://academic.oup.com/treephys/article-abstract/2/1-2-3/169/1623649

3. Makela, A., F. Berninger, and P. Hari. 1996. Optimal Control of Gas Exchange during Drought: Theoretical Analysis. Annals of Botany 77:461-468.

4. Katul, G., S. Manzoni, S. Palmroth, and R. Oren. 2010. A stomatal optimization theory to describe the effects of atmospheric CO2 on leaf photosynthesis and transpiration. Annals of Botany 105:431-442


Trace Gas Exchange, VOCs



1. Fuentes, J.D. et al., 2000. Biogenic hydrocarbons in the atmospheric boundary layer: A review. Bulletin of the American Meteorological Society, 81(7): 1537-1575.

2. Monson, R.K. and Holland, E.A., 2001. Biospheric trace gas fluxes and their control over tropospheric chemistry. Annual Review of Ecology and Systematics, 32: 547-+.

3. Sharkey, T.D. and Yeh, S., 2001. Isoprene emission from plants. Annual Review of Plant Physiology and Plant Molecular Biology, 52(1): 407-436.

4. Megonigal, J.P., Hines, M.E. and Visscher, P.T., 2003. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. In: H.D. Holland and K.K. Turekian (Editors), Treatise on Geochemistry. Pergamon, Oxford, pp. 317-424.

5. Laothawornkitkul, J., J. E. Taylor, N. D. Paul, and C. N. Hewitt. 2009. Biogenic volatile organic compounds in the Earth system. The New phytologist 183:27-51.

Friday, May 6, 2016

Isotopes, Tracers and Hydrology

I asked to Daniele Penna (GS, RG), who I know to work on tracers, some bibliography. He answered to me throughly, and I share is notable contribution.

He said:

" - I cited recent or relatively recent papers, leaving out pioneering works, even if they were important historically^1.
- I included almost exclusively experimental papers, and therefore neglecting the integration model-tracers.
-Also, I included essentially only papers that talk about the two most diffuse families of tracers, i.e. stable water isotopes  (no tritium included) and hydrochemical tracers, included electric conductivity.  I did not included: traditional tracers, and recent tracers (other elements, optic fibres for temperature, dyers, DOC, CFC, thermal infrared imagery, dyatomee, synthetic DNA)
- For what regards water isotopes, there is plenty of literature. I left out: all what regards isotopes in precipitation (this has grown almost to be a discipline by itself); all what regards groundwater-surface water interaction at large spatial scales; various methods for the isotopic measure (recent developments connected to laser spectroscopy) and methods for the extraction of water from plants and soil;isotope studies in landslide hydrology (actually there is not very much, but there are groups that started to work on this topics); isotopes in irrigation and through fall; and I also not included works on residence time and travel time that represent another world^2.
- Essentially, I concentrated my attention on the use of isotopic tracers and hydrochemical  which are used for the analysis of the hydrological cycle functioning at catchment scale and of the partition of water fluxes among vegetation and the other parts of the cycle.  Please do not pretend completeness. "


"I subdivided my literature review in three parts^3:

isotopes: general info and reviews
isotopes about ecohydrology
isotopes plus hydrochemistry for catchment hydrology

In the third group there is a fourth group (here presented separately) dedicated to snow-dominated basins. ^4
Finally a good reading would be the book by Leibundgut et al, 2009.  "

Notes

^1 [If someone wants to fill this gap, he can refer to literature cited in Benchmark paper ….]
^2 [Thank you Daniele, also know what you neglected is very informative]  
^3 [They actually became four]
^4 [I added at the bottom the papers included in the IAHR book]

References

0 - Books

Christian Leibundgut, Piotr Maloszewski, Christor.ph Külls, Tracers in Hydrology, 2009

Aggarwal P. K., FrÃhlich K. O. , Gat J. R. and Gonfiantini (eds.), Benchmark papers in Isotope Hydrology,  IAHR, 2012

1 - General info and reviews

Burns, D. A. (2002). Stormflow-hydrograph separation based on isotopes: the thrill is gone ? what's next? Hydrological Processes, 16(7), 1515–1517. http://doi.org/10.1002/hyp.5008

Buttle, J. (2005). 116: Isotope Hydrograph Separation of Runoff Sources, In: Anderson MG, McDonnell JJ, eds., Encyclopaedia of Hydrological Sciences. Chichester: Wiley 1763-1174, ch. 116.

Gat, J. R. (1996). OXYGEN AND HYDROGEN ISOTOPES IN THE HYDROLOGIC CYCLE. Annual Review of Earth and Planetary Sciences, 24, 225–262.

Klaus, J., & McDonnell, J. J. (2013). Hydrograph separation using stable isotopes: Review and evaluation. Journal of Hydrology, 505(C), 47–64. http://doi.org/10.1016/j.jhydrol.2013.09.006

Leibundgut, C., & Seibert, J. (2014). 2.09 Tracer Hydrology (pp. 215–236).

McDonnel, J., Bonnell, B., Stewart, M. K., & Pearce, J. (1990). Deuterium Variations in Storm Rainfall: Implications for Stream Hydrograph Separation. Water Resources Research, 26(3), 455–458.

McGuire, K. J., & McDonnell, J. J. (2015). Tracer advances in catchment hydrology. Hydrological Processes, 29(25), 5135–5138. http://doi.org/10.1002/hyp.10740

McGuire, K., & McDonnell, J. (2008). Stable isotope tracers in watershed hydrology (pp. 1–21).

Ogunkoya, O. O., & Jenkins, A. (1993). Analysis of storm hydrograph and flow pathways using a three-component hydrograph separation model. Journal of Hydrology, 142, 71–88.

Tetzlaff, D., Buttle, J., Carey, S. K., McGuire, K., Laudon, H., & Soulsby, C. (2014). Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review. Hydrological Processes, 29(16), 3475–3490. http://doi.org/10.1002/hyp.10412

Vitvar, T., Aggarval, P. K., & McDonnel, J. (2016). 12. A review of isotope applications in catchmen hydrology, 1–19.

Wels, C., Cornett, R. J., & Lazerte, B. D. (1991). Hydrograph separation: a comparison of geochemical and isotopic tracers. Journal of Hydrology, 122, 253–274.

2 - Ecohydrology

Asbjornsen, H., Goldsmith, G. R., Alvarado-Barrientos, M. S., Rebel, K., Van Osch, F. P., Rietkerk, M., et al. (2011). Ecohydrological advances and applications in plant-water relations research: a review. Journal of Plant Ecology, 4(1-2), 3–22. http://doi.org/10.1093/jpe/rtr005

Beyer, M., Koeniger, P., Gaj, M., Hamutoko, J. T., Wanke, H., & Himmelsbach, T. (2016). A deuterium-based labeling technique for the investigation of rooting depths, water uptake dynamics and unsaturated zone water transport in semiarid environments. Journal of Hydrology, 533(C), 627–643. http://doi.org/10.1016/j.jhydrol.2015.12.037

Bowen, G. (2015). The diversified economics of soil water. Nature, 525, 43–44.

Brooks, J. R., Barnard, H. R., Coulombe, R., & McDonnell, J. J. (2009). Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geoscience, 3(2), 1–5. http://doi.org/10.1038/ngeo722

Evaristo, J., Jasechko, S., & McDonnell, J. J. (2015). Global separation of plant transpiration from groundwater and streamflow. Nature, 525(7567), 91–94. http://doi.org/10.1038/nature14983

Evaristo, J., McDonnell, J. J., Scholl, M. A., Bruijnzeel, L. A., & Chun, K. P. (2016). Insights into plant water uptake from xylem-water isotope measurements in two tropical catchments with contrasting moisture conditions. Hydrological Processes, n/a–n/a. http://doi.org/10.1002/hyp.10841

Geris, J., Tetzlaff, D., McDonnell, J., Anderson, J., Paton, G., & Soulsby, C. (2015). Ecohydrological separation in wet, low energy northern environments? A preliminary assessment using different soil water extraction techniques. Hydrological Processes, 29(25), 5139–5152. http://doi.org/10.1002/hyp.10603

Goldsmith, G. R., Muñoz-Villers, L. E., Holwerda, F., McDonnell, J. J., Asbjornsen, H., & Dawson, T. E. (2011). Stable isotopes reveal linkages among ecohydrological processes in a seasonally dry tropical montane cloud forest. Ecohydrology, 5(6), 779–790. http://doi.org/10.1002/eco.268

Good, P. G., Noone, D., & Bowen, G. (2015). Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349(6244), 175–178.

Hsueh, Y.-H., Chambers, J. L., Krauss, K. W., Allen, S. T., & Keim, R. F. (2016). Hydrologic exchanges and baldcypress water use on deltaic hummocks, Louisiana USA. Ecohydrology, n/a–n/a. http://doi.org/10.1002/eco.1738

McDonnell, J. J. (2014). The two water worlds hypothesis: ecohydrological separation of water between streams and trees? Wiley Interdisciplinary Reviews: Water, n/a–n/a. http://doi.org/10.1002/wat2.1027

McGuire, K., & McDonnell, J. J. (2008). Stable isotope tracers in watershed hydrology (pp. 335–346).

Rong, L., Chen, X., Chen, X., Wang, S., & Du, X. (2011). Isotopic analysis of water sources of mountainous plant uptake in a karst plateau of southwest China. Hydrological Processes, 25(23), 3666–3675. http://doi.org/10.1002/hyp.8093

Singer, M. B., Sargeant, C. I., Piégay, H., Riquier, J., Wilson, R. J. S., & Evans, C. M. (2014). Floodplain ecohydrology: Climatic, anthropogenic, and local physical controls on partitioning of water sources to riparian trees. Water Resources Research, 50(5), 4490–4513. http://doi.org/10.1002/2014WR015581

Tetzlaff, D., Buttle, J., Carey, S. K., van Huijgevoort, M. H. J., Laudon, H., McNamara, J. P., et al. (2015). A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models. Hydrological Processes, 29(25), 5153–5173. http://doi.org/10.1002/hyp.10515

Treydte, K., Boda, S., Graf Pannatier, E., Fonti, P., Frank, D., Ullrich, B., et al. (2014). Seasonal transfer of oxygen isotopes from precipitation and soil to the tree ring: source water versus needle water enrichment. New Phytologist, 202(3), 772–783. http://doi.org/10.1111/nph.12741

Wang, L., Liu, J., Sun, G., Wei, X., Liu, S., & Dong, Q. (2012). Preface “Water, climate, and vegetation: ecohydrology in a changing world.” Hydrology and Earth System Sciences, 16(12), 4633–4636. http://doi.org/10.5194/hess-16-4633-2012

3 - Hydrochemistry for catchment hydrology

Barthold, F. K., Wu, J., Vaché, K. B., Schneider, K., Frede, H.-G., & Breuer, L. (2010). Identification of geographic runoff sources in a data sparse region: hydrological processes and the limitations of tracer-based approaches. Hydrological Processes, 24(16), 2313–2327. http://doi.org/10.1002/hyp.7678

Burns, D. A., McDonnell, J. J., Hooper, R. P., Peters, N. E., Freer, J. E., Kendall, C., & Beven, K. (2001). Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrological Processes, 15(10), 1903–1924. http://doi.org/10.1002/hyp.246

Camacho Suarez, V. V., Saraiva Okello, A. M. L., Wenninger, J. W., & Uhlenbrook, S. (2015). Understanding runoff processes in a semi-arid environment through isotope and hydrochemical hydrograph separations. Hydrology and Earth System Sciences, 19(10), 4183–4199. http://doi.org/10.5194/hess-19-4183-2015

Farrick, K. K., & Branfireun, B. A. (2015). Flowpaths, source water contributions and water residence times in a Mexican tropical dry forest catchment. Journal of Hydrology, 529(P3), 854–865. http://doi.org/10.1016/j.jhydrol.2015.08.059

Fischer, B. M. C., Rinderer, M., Schneider, P., Ewen, T., & Seibert, J. (2015). Contributing sources to baseflow in pre-alpine headwaters using spatial snapshot sampling. Hydrological Processes, 29(26), 5321–5336. http://doi.org/10.1002/hyp.10529

Genereux, D. (1998). Quantifying uncertainty in tracer-based hydrograph separations. Water Resources Research, 34(4), 915–919.

Hooper, R. P. (2001). Applying the scientific method to small catchment studies: a review of the Panola Mountain experience. Hydrological Processes, 15(10), 2039–2050. http://doi.org/10.1002/hyp.255

Hrachowitz, M., Bohte, R., Mul, M. L., Bogaard, T. A., Savenije, H. H. G., & Uhlenbrook, S. (2011). On the value of combined event runoff and tracer analysis to improve understanding of catchment functioning in a data-scarce semi-arid area. Hydrology and Earth System Sciences, 15(6), 2007–2024. http://doi.org/10.5194/hess-15-2007-2011

Katsuyama, M., Ohte, N., & Kobashi, S. (2001). A three-component end-member analysis of streamwater hydrochemistry in a small Japanese forested headwater catchment. Hydrol. Proc., 15, 249–260.

Inamdar, S., Dhillon, G., Singh, S., Dutta, S., Levia, D., Scott, D., et al. (2013). Temporal variation in end-member chemistry and its influence on runoff mixing patterns in a forested, Piedmont catchment. Water Resources Research, 49(4), 1828–1844. http://doi.org/10.1002/wrcr.20158

James, A. L., & Roulet, N. T. (2006). Investigating the applicability of end-member mixing analysis (EMMA) across scale: A study of eight small, nested catchments in a temperate forested watershed. Water Resources Research, 42(8), n/a–n/a. http://doi.org/10.1029/2005WR004419

Klaus, J., McDonnell, J. J., Jackson, C. R., Du, E., & Griffiths, N. A. (2015). Where does streamwater come from in low-relief forested watersheds? A dual-isotope approach. Hydrology and Earth System Sciences, 19(1), 125–135. http://doi.org/10.5194/hess-19-125-2015

Lee, J., Feng, X., Faiia, A. M., Posmentier, E. S., Kirchner, J. W., Osterhuber, R., & Taylor, S. (2010). Isotopic evolution of a seasonal snowcover and its melt by isotopic exchange between liquid water and ice. Chemical Geology, 270(1-4), 126–134. http://doi.org/10.1016/j.chemgeo.2009.11.011

Lu, H.-Y. (2014). Application of water chemistry as a hydrological tracer in a volcano catchment area: A case study of the Tatun Volcano Group, North Taiwan. Journal of Hydrology, 511(C), 825–837. http://doi.org/10.1016/j.jhydrol.2014.02.036

Machavaram, M. V., Whittemore, D. O., Conrad, M. E., & Miller, N. L. (2006). Precipitation induced stream flow: An event based chemical and isotopic study of a small stream in the Great Plains region of the USA. Journal of Hydrology, 330(3-4), 470–480. http://doi.org/10.1016/j.jhydrol.2006.04.004


McGlynn, B. L., & McDonnell, J. J. (2003). Quantifying the relative contributions of riparian and hillslope zones to catchment runoff. Water Resources Research, 39(11), n/a–n/a. http://doi.org/10.1029/2003WR002091

Meriano, M., Howard, K. W. F., & Eyles, N. (2011). The role of midsummer urban aquifer recharge in stormflow generation using isotopic and chemical hydrograph separation techniques. Journal of Hydrology, 396(1-2), 82–93. http://doi.org/10.1016/j.jhydrol.2010.10.041

Muñoz-Villers, L. E., & McDonnell, J. J. (2012). Runoff generation in a steep, tropical montane cloud forest catchment on permeable volcanic substrate. Water Resources Research, 48(9), n/a–n/a. http://doi.org/10.1029/2011WR011316

Muñoz-Villers, L. E., & McDonnell, J. J. (2013). Land use change effects on runoff generation in a humid tropical montane cloud forest region. Hydrology and Earth System Sciences, 17(9), 3543–3560. http://doi.org/10.5194/hess-17-3543-2013

Neal, C., Reynolds, B., Kirchner, J. W., Rowland, P., Norris, D., Sleep, D., et al. (2013). High-frequency precipitation and stream water quality time series from Plynlimon, Wales: an openly accessible data resource spanning the periodic table. Hydrological Processes, 27(17), 2531–2539. http://doi.org/10.1002/hyp.9814

Pellerin, B. A., Wollheim, W. M., Feng, X., & Vörösmarty, C. J. (2008). The application of electrical conductivity as a tracer for hydrograph separation in urban catchments. Hydrological Processes, 22(12), 1810–1818. http://doi.org/10.1002/hyp.6786

Penna, D., van Meerveld, H. J., Oliviero, O., Zuecco, G., Assendelft, R. S., Dalla Fontana, G., & Borga, M. (2014). Seasonal changes in runoff generation in a small forested mountain catchment. Hydrological Processes, 29(8), 2027–2042. http://doi.org/10.1002/hyp.10347

Šanda, M., Vitvar, T., Kulasová, A., Jankovec, J., & Císlerová, M. (2013). Run-off formation in a humid, temperate headwater catchment using a combined hydrological, hydrochemical and isotopic approach (Jizera Mountains, Czech Republic). Hydrological Processes, 28(8), 3217–3229. http://doi.org/10.1002/hyp.9847

Tetzlaff, D., & Soulsby, C. (2008). Sources of baseflow in larger catchments – Using tracers to develop a holistic understanding of runoff generation. Journal of Hydrology, 359(3-4), 287–302. http://doi.org/10.1016/j.jhydrol.2008.07.008

Tetzlaff, D., Waldron, S., Brewer, M. J., & Soulsby, C. (2007). Assessing nested hydrological and hydrochemical behaviour of a mesoscale catchment using continuous tracer data. Journal of Hydrology, 336(3-4), 430–443. http://doi.org/10.1016/j.jhydrol.2007.01.020

4 - Snow dominated catchments

Carey, S. K., & Quinton, W. L. (2004). Evaluating snowmelt runoff generation in a discontinuous permafrost catchment using stable isotope, hydrochemical and hydrometric data. Nordic Hydrology, 309–324.

Chiogna, G., Santoni, E., Camin, F., Tonon, A., Majone, B., Trenti, A., & Bellin, A. (2014). Stable isotope characterization of the Vermigliana catchment. Journal of Hydrology, 509(C), 1–11. http://doi.org/10.1016/j.jhydrol.2013.11.052

Dahlke, H. E., Lyon, S. W., Jansson, P., Karlin, T., & Rosqvist, G. (2013). Isotopic investigation of runoff generation in a glacierized catchment in northern Sweden. Hydrological Processes, 28(3), 1383–1398. http://doi.org/10.1002/hyp.9668

Earman, S., Campbell, A. R., Phillips, F. M., & Newman, B. D. (2006). Isotopic exchange between snow and atmospheric water vapor: Estimation of the snowmelt component of groundwater recharge in the southwestern United States. Journal of Geophysical Research, 111(D9), D09302–18. http://doi.org/10.1029/2005JD006470

Engel, M., Penna, D., Bertoldi, G., Dell'Agnese, A., Soulsby, C., & Comiti, F. (2015). Identifying run-off contributions during melt-induced run-off events in a glacierized alpine catchment. Hydrological Processes, 30(3), 343–364. http://doi.org/10.1002/hyp.10577

Jeelani, G., Bhat, N. A., & Shivanna, K. (2010). Use of d18 O tracer to identify stream and spring origins of a mountainous catchment: A case study from Liddar watershed, Western Himalaya, India. Journal of Hydrology, 393(3-4), 257–264. http://doi.org/10.1016/j.jhydrol.2010.08.021

Maurya, A. S., Shah, M., Deshpande, R. D., Bhardwaj, R. M., Prasad, A., & Gupta, S. K. (2010). Hydrograph separation and precipitation source identification using stable water isotopes and conductivity: River Ganga at Himalayan foothills. Hydrological Processes, 25(10), 1521–1530. http://doi.org/10.1002/hyp.7912

Ohlanders, N., Rodriguez, M., & McPhee, J. (2013). Stable water isotope variation in a Central Andean watershed dominated by glacier and snowmelt. Hydrology and Earth System Sciences, 17(3), 1035–1050. http://doi.org/10.5194/hess-17-1035-2013

Peng, T.-R., Chen, K.-Y., Zhan, W.-J., Lu, W.-C., & Tong, L.-T. J. (2015). Use of stable water isotopes to identify hydrological processes of meteoric water in montane catchments. Hydrological Processes, 29(23), 4957–4967. http://doi.org/10.1002/hyp.10557

Penna, D., Ahmad, M., Birks, S. J., Bouchaou, L., Brenčič, M., Butt, S., et al. (2014a). A new method of snowmelt sampling for water stable isotopes. Hydrological Processes, 28(22), 5637–5644. http://doi.org/10.1002/hyp.10273

Penna, D., Engel, M., Mao, L., Dell'Agnese, A., Bertoldi, G., & Comiti, F. (2014b). Tracer-based analysis of spatial and temporal variations of water sources in a glacierized catchment. Hydrology and Earth System Sciences, 18(12), 5271–5288. http://doi.org/10.5194/hess-18-5271-2014

Penna, D., van Meerveld, H. J., Zuecco, G., Dalla Fontana, G., & Borga, M. (2016). Hydrological response of an Alpine catchment to rainfall and snowmelt events. Journal of Hydrology, 537, 382–397. http://doi.org/10.1016/j.jhydrol.2016.03.040

Shanley, J. B., Kendall, C., Smith, T. E., Wolock, D. M., & McDonnell, J. J. (2002). Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA. Hydrological Processes, 16(3), 589–609. http://doi.org/10.1002/hyp.312

Shanley, J. B., Sebestyen, S. D., McDonnell, J. J., McGlynn, B. L., & Dunne, T. (2014). Water's Way at Sleepers River watershed - revisiting flow generation in a post-glacial landscape, Vermont USA. Hydrological Processes, 29(16), 3447–3459. http://doi.org/10.1002/hyp.10377

Sueker, J. K., Ryan, J. A., Kendall, C., & Jarret, R. D. (2000). Determination of hydrologic pathways during snowmelt for alpine/subalpine basins, Rocky Mountain National Park, Colorado. Water Resources Res., 36(1), 63–75.

Taylor, S., FEng, X., Kirchner, J. W., Osterhuber, R., Klaue, B., & Renshaw, C. E. (2001). Isotopic evolution of a seasonal snowpack and its melt. Water Resources Res., 37(3), 759–769.

Taylor, S., Feng, X., Williams, M., & McNamara, J. (2002). How isotopic fractionation of snowmelt affects hydrograph separation. Hydrological Processes, 16(18), 3683–3690. http://doi.org/10.1002/hyp.1232

Unnikrishna, P. V., Mcdonnell, J. J., & Kendall, C. (2002). Isotope variations in a Sierra Nevada snowpack and their relation to meltwater. Journal of Hydrology, 260, 38–57.

Yde, J. C., Knudsen, N. T., Steffensen, J. P., Carrivick, J. L., Hasholt, B., Ingeman-Nielsen, T., et al. (2016). Stable oxygen isotope variability in two contrasting glacier river catchments in Greenland. Hydrology and Earth System Sciences, 20(3), 1197–1210. http://doi.org/10.5194/hess-20-1197-2016

Zhang, Y. H., Song, X. F., & Wu, Y. Q. (2008). Use of oxygen-18 isotope to quantify flows in the upriver and middle reaches of the Heihe River, Northwestern China. Environmental Geology, 58(3), 645–653. http://doi.org/10.1007/s00254-008-1539-y


Saturday, March 10, 2012

A few historic papers on geomorphology from the Bill Dietrich collection

I did my Ph.D. on landscape evolution models, and at that time I collected, among other stuff, the papers that Bill Dietrich was used to distribute for reading to his students. Here the list of the historic (before 1980) papers in that group.

Gilbert, G.K., Report on the geology of the Henry Mountains (Utah): US Geographical an Geological, Survey of the Rocky Mountains Region, Washington D.C., 1877

Gilbert, G.K., The convexity of hilltops, Journal of Geology, 17(4), 344-350, 1909

Davis, W.M., The convex profile of badlands divides, Science, 20: 245, 1892

Horton, R. E. Erosional development of streams, and their drainage basins: hydrophysical approach to quantitative morphology, Bulletin of the Geological Society of America, 56: 275-370, 1945

Penck W., Morphological Analysis of landforms, London Macmillan, 1953

King, L.C., The uniformitarian nature of hillslopes, Trans. Edimburgh Geological Society, 17: 81-102, 1957

Culling, W.E.H. Analytical theory of erosion, Journal of Geology 68, 336-344, 1960

Hack, J.T., Interpretation of erosional topography in humid temperate regions, American Journal of Science, 258A: 80-97, 1960

Anhert, F.,  The role of the equilibrium concept in the interpretation of landforms of fluvial erosion and deposition, L'Evolution des Versants. Liege. Universite' de Liege, 23-14, 1967

Kirkby, M.J., Hillslope process-response models based on the continuity equation, Inst. British Geographers. Spec. Publ., 3:15-30, 1971

Smith, T.R., and F.P Bretherton, Stability and the conservation of Mass in Drainage Basin Evolution, Water Resources Research, 8(6): 1506-1529, 1972

For the longer series by Mike Kirkby look here.


Wednesday, January 18, 2012

Highest Cited WRR papers ever

I had from WRR editor, Prof. Praveen Kumar the list of highest cited Water Resources Research Papers, one of the best  Journals in the Hydrological field. I asked to have this ranking in order to have another way to select and and papers to my collection of historic and benchmark papers for Hydrology.
I was not actually expecting an answer from Praveen but it cames (and I realized later that this record is easy to obtain having a WEB of SCIENCE and SCOPUS account) Results were stored in a file that you can retrieve here.

Being the most cited does not necessarily means being the best papers. Some very good papers could have been published very recently, and still not having enough citations to rank among the first ones. Some very good  papers could be too specialistic to be read by most of us fluency.  Besides some topic are of more broad interest than others, and this increase their citations' rates.  However, after all of these disclaimers, here there are the papers, some statistics, and comments. The paper grouped, for broad sub-fields, are about:


calibration and uncertainty  8
evapotranspiration and ecohydrology 6
experimental hydrology 2
geochemistry 5
geomorphology 22
groundwater 78
infiltration and vadose zone 29
other 10
precipitation 5
mathematical ans statistical 13
surface water 23

The dominance of groundwater papers is apparent, but this is probably a inheritance of the lated eighties and nineties. While browsing the recent papers there is more equilibrium between the fields covered.

Grouped for year of publication, the are distributed as shown below. 

The figures shows that they cover all the decades of publication of WRR from 1965 to 2003.

Grouped per decades these 201 paper are

1960 16
1970  36
1980  75
1990  68
2000  6 

So, the 20 higher cited papers are (the other can be seen in the xls file):

- MUALEM, Y, NEW MODEL FOR PREDICTING HYDRAULIC CONDUCTIVITY OF UNSATURATED POROUS-MEDIA, 1976, cit: 1818

- TOPP, GC, DAVIS, JL, ANNAN, AP, ELECTROMAGNETIC DETERMINATION OF SOIL-WATER CONTENT - MEASUREMENTS IN COAXIAL TRANSMISSION-LINES, 1980, cit: 1800

- BEVEN, K, GERMANN, P, MACROPORES AND WATER-FLOW IN SOILS, 1982, cit:1058

- CLAPP, RB, HORNBERGER, GM, EMPIRICAL EQUATIONS FOR SOME SOIL HYDRAULIC-PROPERTIES,1978, cit: 1034

- GELHAR, LW, AXNESS, CL, 3-DIMENSIONAL STOCHASTIC-ANALYSIS OF MACRODISPERSION IN AQUIFERS, 1983, cit: 986

- RITCHIE, JT, MODEL FOR PREDICTING EVAPORATION FROM A ROW CROP WITH INCOMPLETE COVER, 1972,cit: 931

- DUAN, QY, SOROOSHIAN, S, GUPTA, HV EFFECTIVE AND EFFICIENT GLOBAL OPTIMIZATION FOR CONCEPTUAL RAINFALL-RUNOFF MODELS, 1992, cit: 776

- SUDICKY, EA, A NATURAL GRADIENT EXPERIMENT ON SOLUTE TRANSPORT IN A SAND AQUIFER - SPATIAL VARIABILITY OF HYDRAULIC CONDUCTIVITY AND ITS ROLE IN THE DISPERSION PROCESS,1986, cit:645

- HIRSCH, RM, SLACK, JR, SMITH, RA, TECHNIQUES OF TREND ANALYSIS FOR MONTHLY WATER-QUALITY DATA, 1982, cit:577

- Legates,  GJ, McCabe, DR, Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation, 1999, cit:573

- CELIA, MA, BOULOUTAS, ET, ZARBA, RL, A GENERAL MASS-CONSERVATIVE NUMERICAL-SOLUTION FOR THE UNSATURATED FLOW EQUATION, 1990, cit:564

- GELHAR, LW, WELTY, C, REHFELDT, KR, A CRITICAL-REVIEW OF DATA ON FIELD-SCALE DISPERSION IN AQUIFERS, 1992, cit:554

- YEH, WWG, REVIEW OF PARAMETER-IDENTIFICATION PROCEDURES IN GROUNDWATER HYDROLOGY - THE INVERSE PROBLEM, 1986, cit: 546

- COSBY, BJ, HORNBERGER, GM, GALLOWAY, JN, WRIGHT, RF, MODELING THE EFFECTS OF ACID DEPOSITION - ASSESSMENT OF A LUMPED PARAMETER MODEL OF SOIL-WATER AND STREAMWATER CHEMISTRY, 1985, cit: 530

- FREEZE, RA, STOCHASTIC-CONCEPTUAL ANALYSIS OF ONE-DIMENSIONAL GROUNDWATER FLOW IN NONUNIFORM HOMOGENEOUS MEDIA, 1975, cit: 528

- JACKSON, RD, IDSO, SB, REGINATO, RJ, PINTER, PJ, CANOPY TEMPERATURE AS A CROP WATER-STRESS INDICATOR, 1981, cit:506

- Tarboton, A new method for the determination of flow directions and upslope areas in grid digital elevation models, DG, 1997, cit: 477

- CARSEL, RF, PARRISH, RS, DEVELOPING JOINT PROBABILITY-DISTRIBUTIONS OF SOIL-WATER RETENTION CHARACTERISTICS, 1988, cit: 467

- COSBY, BJ, HORNBERGER, GM, CLAPP, RB, GINN, TR, A STATISTICAL EXPLORATION OF THE RELATIONSHIPS OF SOIL-MOISTURE CHARACTERISTICS TO THE PHYSICAL-PROPERTIES OF SOILS, 1984, cit: 451
RICHARDSON, CW, STOCHASTIC SIMULATION OF DAILY PRECIPITATION, TEMPERATURE, AND SOLAR-RADIATION, 1981, cit: 440

Reading the list of these paper is apparent that the first ones belong to a interdisciplinary area of interest that cover hydrology, soil science, and, at least, agricolture.  The inverse modelling is also a pretty relevant topic, while surface hydrology is not present (except for Tarboton's paper, which however is on DEM treatment): which is a surprise to me!
The mean number of citations is around 300. So, a high cited paper, at least for WRR should have around 200 citations (unfortunately, my papers are still away from this).  A summary of the statistics is:

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    
  184.0   208.0   241.0   302.9   318.0  1818.0    

The ten most recent papers among the most cited are:

- Houser, PR, Shuttleworth, WJ, Famiglietti, JS, Gupta, HV, Syed, KH, Goodrich, DC, Integration of soil moisture remote sensing and hydrologic modeling using data assimilation,  1998, cit: 185

- Legates, DR, McCabe, GJ, Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation,   1999, cit: 573

- Nepf, HM, Drag, turbulence, and diffusion in flow through emergent vegetation, 1999, cit: 239

- Western, AW, Grayson, RB, Bloschl, G, Willgoose, GR, McMahon, Observed spatial organization of soil moisture and its relation to terrain indices  TA 1999,  cit: 209

- Rodriguez-Iturbe, I, Ecohydrology: A hydrologic perspective of climate-soil-vegetation dynamics,   2000, cit: 213

- Iverson, RM, Landslide triggering by rain infiltration,  2000, cit:207

-McArthur, JM, Ravenscroft, P, Safiulla, S, Thirlwall,  MF, Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh  2001, cit:  279

-Zhang, L, Dawes, WR, Walker, GR, Response of mean annual evapotranspiration to vegetation changes at catchment scale,  2001, cit:  274

-Zhang, XB, Harvey, KD, Hogg, WD, Yuzyk, TR, Trends in Canadian streamflow, 2001, cit: 201

-  Vrugt, JA, Gupta, HV, Bouten, W, Sorooshian, S 2003, A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters

Neither between these appears a paper on surface waters. However, it is interesting to note that the topics covered are different from those of the highest cited papers. Meaning probably that each decade has its focus. 

Yearly citations rate show that the first group of papers are really outliers with respect to the others. However the mean number of citations per year is around 12, and if your papers has more that 5 citations per years, there is some hope that sometimes in the future it could enter in this rank.


 Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    
  4.244   7.960  10.420  12.300  14.190  56.250   


The ten papers with the highest annual average citations' rate are:

- TOPP, GC, DAVIS, JL, ANNAN, AP, ELECTROMAGNETIC DETERMINATION OF SOIL-WATER CONTENT - MEASUREMENTS IN COAXIAL TRANSMISSION-LINES,  1980, cit: 1800, citation rate: 56.25,

-  MUALEM, Y, NEW MODEL FOR PREDICTING HYDRAULIC CONDUCTIVITY OF UNSATURATED POROUS-MEDIA, 1976, citation rate: 50.5

- DR, McCabe, GJ, Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation Legates,  1999,cit: 1800,cit: , citation rate: 44.01

- DUAN, QY, SOROOSHIAN, S, GUPTA, V, EFFECTIVE AND EFFICIENT GLOBAL OPTIMIZATION FOR CONCEPTUAL RAINFALL-RUNOFF MODELS,  1992, cit: 776, citation rate:38.8

- BEVEN, K, GERMANN, P, MACROPORES AND WATER-FLOW IN SOILS,  1982, cit: 1058, citation rate: 35.3

- GELHAR, LW, AXNESS, CL , 3-DIMENSIONAL STOCHASTIC-ANALYSIS OF MACRODISPERSION IN AQUIFERS, 1983, cit: 986, citation rate: 34

- Tarboton, DG, A new method for the determination of flow directions and upslope areas in grid digital elevation models, 1997, cit: 477, citation rate: 30.4

- CLAPP, RB, HORNBERGER, GM, EMPIRICAL EQUATIONS FOR SOME SOIL HYDRAULIC-PROPERTIES, 1978 cit: 1034, citation rate: 24

- Gupta, HV, Sorooshian, S, Yapo, PO , Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information, 1998, cit. 402, citation rate: 23.3

- GELHAR, LW, WELTY, C, REHFELDT, KR, A CRITICAL-REVIEW OF DATA ON FIELD-SCALE DISPERSION IN AQUIFERS,  1992, cit: 554, citations rate: 19.2

Finally, the authors who wrote these papers are 337. Most of them appear once. Those who compare more than two times are: 


12           ABRIOLA, LM    3
12           BEVEN, K    3
12           CELIA, MA    3
12           COSBY, BJ    3
12           DAGAN, G    3
12           DIETRICH, WE    3
12           GORELICK, SM    3
12           GRAYSON, RB    3
12            IDSO, SB    3
12           KITANIDIS, PK    3
12           MCMAHON, TA    3
12           NIELSEN, DR    3
12           PAPADOPU.IS    3
12           SUDICKY, EA    3
12           VANGENUCHTEN, MT    3
12           WITHERSPOON, PA    3
12           WRIGHT, RF    3
7            FREEZE, RA    4
7            MANDELBROT, BB    4
7            RODRIGUEZ-ITURBE, I    4
7            SOROOSHIAN, S    4
3            GUPTA, HV    5
3            GUTJAHR, AL    5
3            HORNBERGER, GM    5
3            NEUMAN, SP    5
3            MONTGOMERY, DR    6
2            WALLIS, JR    6
1            GELHAR, LW   12

I must say that I know most of the Authors, many of them personally, since their work inspired mine, and just by googling their names it is clear that some of them gave some exceptional contribution even in other journals. So despite the many disclaimer citations say something. Someone of my hydrological heroes is missing: but doing benchmark papers is probably is slightly a different thing than writing a highly cited paper.