Monday, April 29, 2024

Exploring the Soil-Plant-Atmosphere Continuum: Advancements, Integrated Modeling and Ecohydrological Insights, a Ph.D. Thesis by C. D'Amato

This thesis aims to address the complex issue of SPA interactions by developing a comprehensive set of models capable of representing the intricate dynamics of this system. At the core of this research lies the integration of sophisticated descriptions of hydrological and plant biochemical processes into a novel ecohydrological model, GEOSPACE-1D (Soil Plant Atmosphere Continuum Estimator model in GEOframe).

Through a combination of theoretical exploration, engineering methodologies, and empirical experiments, this thesis aims to advance our understanding of SPA interactions. The development of adaptable models, represents a significant contribution to the field. The thesis emphasizes the practical implications of employing models to analyze experimental data, thereby enhancing our comprehension of various phenomena.

In conclusion, this thesis provides valuable insights into SPA interactions and lays the groundwork for future research and applications. By embracing the challenge of under- standing and modeling the SPA continuum, this work contributes to the ongoing efforts to address environmental challenges and promote sustainable practices.  The thesis draft can be dowloaded by clicking on the figure. 


No comments:

Post a Comment