Thursday, February 6, 2025

The Hydrological Modeling 2025 class

 Welcome to the 2025 Hydrological Modeling Class!

To better understand the materials provided:

  • Storyboards – Summaries of the lectures, usually in Italian.
  • Whiteboards – Explanations of specific topics, presented on a whiteboard using Notability on an iPad.
  • Slides – Commented in English (available since 2021).
  • Videos – Recorded during lectures to complement the slides, with no editing (as post-production would be too time-consuming).
    • 2025 videos are available on a [Vimeo Showcase] (link here).
  • Additional information & references – Marked in italics, for the curious and the brave who want to explore further.

📅 24 February 2025– Part I

Syllabus & Introduction to Hydrological Modeling

In this session, I introduced the course and its learning-by-doing philosophy. We cover all theoretical concepts first, followed by the practical applications (with Professor Giuseppe Formetta).

The real start 

To begin is also worth to have a little (philosophical) analysis of what a model is. This is what done in the following parte of the lecture

📅 25 February 2025 – Geomorphometry

This session begins with a discussion of previous lesson topics and the rationale behind introducing geomorphometric concepts. Since catchments are spatially extended, understanding their geometry is essential for studying catchment hydrology.

In the first part, we focus on the geometrical and differential characteristics of topography, including:

  • Elevation
  • Slope
  • Curvature

These parameters are fundamental for extracting the river network and identifying different parts of a catchment.

We then define drainage directions and explore how they are computed using Digital Elevation Models (DEMs)—where topography is discretized on a regular grid. From these drainage directions, we determine the total contributing area at each point of a DEM.

These two key characteristics allow us to:

  1. Identify channel heads and extract the river network.
  2. Define hillslopes and establish an initial framework for Hydrologic Response Units (HRUs).

    📅 3 March 2025 

    Q&A - 

    Interpolations 
    This lecture, assuming that now you have at least the concepts of what a catchment is and theoretically you know how to extract it and subdivide it in parts, deals with the data to feed catchments hydrology models. Because catchments have a spatial distribution, then also the driving data must be distributed. We need therefore methods of interpolation. 

    Installations of the software can be found here, at this link.

    📅 10 March 2025 

     Interpolations part II
    In this class we try to understand how to estimate the errors over the estimates. Besides we introduce a method (the Normal Score) to avoid to obtain negative values when positive interpolated values are required.
    Q&A - 
    Spatial Interpolation (Vimeo2023)

    Hydrological Models. This is a class about hydrological models, so what are they ?

    The title is self-explanatory. A theoretical approach to modelling is necessary because we have to frame properly our action when we jump from the laws of physics to the laws of  hydrology. Making hydrology we do not have to forget physics but for getting usable models we have to do appropriate simplifications and distorsions. The type of model we will use in the course are those in the tradition are called lumped models. Here we also introduce a graphical tool to represent these models.
    2025-03-13-Hydrological Models 

    For old material give a look to Hydrological Modelling 2023

    No comments:

    Post a Comment