Click on the Figure to see the presentation in Italian. Click here for the English version.
The short video synthesis made (in Italian) for public who could not participate is here below.
Nice papers to read:
Bearup, L. A., Maxwell, R. M., Clow, D. W., & McCray, J. E. (2014). Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds. Nature Climate Change, 4(6), 481–486. http://doi.org/10.1038/nclimate2198
Benavides-Solorio, J. de D., & MacDonald, L. H. (2005). Measurement and prediction of post-fire erosion at the hillslope scale, Colorado Front Range. International Journal of Wildland Fire, 14(4), 457–18. http://doi.org/10.1071/WF05042
Bentz, B., Logan, J., MacMahon, J., Allen, C. D., Ayres, M., Berg, E., et al. (2013). Bark beetle outbreaks in western North America: Causes and consequences, 1–46.
Brovkin, V. (2002). Vegetation-Climate Interactions . Journ. Phys. IV France, (12), 57–72.
Blöschl, G., Ardoin-Bardin, S., Bonell, M., Dorninger, M., Goodrich, D., Gutknecht, D., et al. (2007). At what scales do climate variability and land cover change impact on flooding and low flows? Hydrological Processes, 21(9), 1241–1247. http://doi.org/10.1002/hyp.6669
Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1-4), 28–61. http://doi.org/10.1016/j.jhydrol.2004.12.010
Brown, A. E. (2008, March 10). Predicting the effect of forest cover changes on flow duration curves. (L. Zhang, A. Western, & T. A. McMahon, Eds.).
Brubaker, K., Entekhabi, D., & Eagleson, P. S. (1993). Estimation of Continental Precipitation Recycling. Water Resources Res., 6(6), 1077–1089.
Eltahir, A. B., & Bras, R. L. (1994). Precipitation Recycling in the Amazon Basin. Quarterly Journal of the Royal Meteorological Society, 120, 861–880.
Entekhabi, D., Rodriguez-Iturbe, & Bras, R. L. (1992). Variability in Large-Scale Water Balance with Land Surface-Atmosphere Interaction. Journal of Climate, 5, 798–813.
Fatichi, S., Pappas, C., & Ivanov, V. Y. (2015). Modeling plant-water interactions: an ecohydrological overview from the cell to the global scale. Wiley Interdisciplinary Reviews: Water, n/a–n/a. http://doi.org/10.1002/wat2.1125
Jenny, H. (1958). Role of the plant factor in the pedogenic functions. Ecology, 39(1), 5–16.
Johansen, M. P., Hakonson, T. E., & Breshears, D. D. (2001). Post-fire runoff and erosion from rainfall simulation: contrasting forests with shrublands and grasslands. Hydrological Processes, 15(15), 2953–2965. http://doi.org/10.1002/hyp.384
Johnson, D. L., Keller, E. A., & Rockwell, T. K. (1990). Dynamic pedogenesis: New views on some key soil concepts, and a model for interpreting quaternary soils. Quaternary Research, 33(3), 306–319. http://doi.org/10.1016/0033-5894(90)90058-S
Miles, J. (1985). The pedogenic effects of different species and vegetation types and the implications. Journal of Soil Science, 36, 371–384.
Pielke, R. A., Sr. (2001). Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall, 1–28.
Tague, C., & Dugger, A. L. (2010). Ecohydrology and Climate Change in the Mountains of the Western USA - A Review of Research and Opportunities. Geography Compass, 4(11), 1648–1663. http://doi.org/10.1111/j.1749-8198.2010.00400.x
Trenberth, K. E. (1999). Atmospheric Moisture Recycling: Role of Advection and Local Evaporation. Journal of Climate, 12, 1368–1381.
No comments:
Post a Comment