Some of the references could look strange (e.g. Fu et al., 2006). In that case, I was looking for literature in the area of fractal surfaces. Something else should be available. In particular, I was looking for a papers by J. Nittman and Eugene Stanley (a "star" among the "fractalists"). In any case, growth of this type of forms is pretty general and ubiquitous (as shown in many papers, and in particular, in Ben Jacob's ones).
I also indulged in adding some papers about snow crystal methamorphism. This is not the topic of the post, but for the moment I keep trace of them in here. Other papers were just added for getting some general reference to crystal growth (e.g. the Krug's one, and those looking to micro-meteorological aspects of the growth).
Interesting readings are also addressed in this older post.
References
Ben Jacob, E. (1993). From snowflake formation to growth of bacterial colonies: Part I. Diffusive patterning in azoic systems. Contemporary Physics, 34(5), 247–273. doi:10.1080/00107519308222085
Ben-Jacob, E. (1997). From snowflake formation to growth of bacterial colonies II: Cooperative formation of complex colonial patterns. Contemporary Physics, 38(3), 205–241. doi:10.1080/001075197182405
Chen, J. P., & Lamb, D. (1994). Simulation of Cloud Microphisical and Chemical Processes using a Multicomponent Framework. Part I: Description of the Microphysical Model. Journal of the Atmospheric Sciences, 51(18), 2613–2630.
Chen, S., & Baker, I. (2010). Evolution of individual snowflakes during metamorphism. Journal of Geophysical Research, 115(D21), D21114. doi:10.1029/2010JD014132
Fu, F., Liu, L., Yang, K., & Wang, L. (2006). The structure of the self-organized blogosphere. arXiv:Physics, 1–5.
Fukuta, N., & Takahashi, T. (1999). The Growth of Atmospheric Ice Crystals: A Summary of Findings in Vertical Supercooled Cloud Tunnel Studies. Journal of the Atmospheric Sciences, 56(12), 1963–1979. doi:10.1175/1520-0469(1999)056<1963:TGOAIC>2.0.CO;2
Gravner, J., & Griffeath, D. (2007). Modeling snow crystal growth III: three dimensional snow fakes. arXiv:Physics, 1–39.
Gravner, J., & Griffeath, D. (2009a). Modeling snow-crystal growth: A three-dimensional mesoscopic approach. Physical Review E, 79(1), 011601. doi:10.1103/PhysRevE.79.011601
Krug, J. (2002). Four Lectures on the Physics of Crystal Growth, arXivcond-Math, 1–43.
Libbrecht, K. G. (2005). The physics of snow crystals. Reports on Progress in Physics. doi:10.1088/0034-4885/68/4/R03
Libbrecht, K. G. (2012, November 23). Toward a Comprehensive Model of Snow Crystal Growth
Libbrecht, K. G. (2013a). Aerodynamical Effects in Snow Cristal Growthth. arXiv:Physics, 1–23.
Libbrecht, K. G. (2013b). Toward a Comprehensive Model of Snow Crystal Growth Dynamics: 2. Structure Dependent Attachment Kinetics near -5 C. arXivcond-Math, 1–13.
Magono, C., & Lee, C. W. (1966). Meterological Classification of Natural Snow Crystals. Journal Of the Faculty of Sciences, Hokkaido University, Japan, 2(4), 312–345.
Nelson, J. (2005). Branch Growth and Sidebranching in Snow Crystals. Crystal Growth & Design, 5(4), 1509–1525. doi:10.1021/cg049685v
Nittmann, J., & Stanley, H. E. (1987). Non-deterministic approach to anisotropic growth patterns with continuously tunable morphology: the fractal properties of some real snowflakes. Journal of Physics a: Mathematical Genereral
Nittmann, J., & Stanley, H. E. (1987). Non-deterministic approach to anisotropic growth patterns with continuously tunable morphology: the fractal properties of some real snowflakes. Journal of Physics a: Mathematical Genereral
Nelson, J., & Knight, C. (1998). Snow Crystal Habit Changes Explained by Layer Nucleation. Journal of the Atmospheric Sciences, 55(8), 1452–1465. doi:10.1175/1520-0469(1998)055<1452:schceb>2.0.co;2
Rango, A., P, W. W., & Erbe, E. F. (1996). Snow crystal imaging using scanning electron microscopy: I. Precipitated snow. Hydrological Sciences–Journal–Des Sciences Hydrologiques, 41(2), 219–233.
Rango, A., P, W. W., & Erbe, E. F. (1996b), Snow crystal imaging using scanning electron microscopy: II. Metamorphosed snow. Hydrological Sciences–Journal–Des Sciences Hydrologiques, 41(2), 235–250.
Reiter, C. A. (2005). A local cellular model for snow crystal growth. Chaos Solitons & Fractals, 23(4), 1111–1119. doi:10.1016/j.chaos.2004.06.071
No comments:
Post a Comment